Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Singular Points Of Second Order Systems Of Real Differential Equations
Download Singular Points Of Second Order Systems Of Real Differential Equations full books in PDF, epub, and Kindle. Read online Singular Points Of Second Order Systems Of Real Differential Equations ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Differential Equations Workbook For Dummies by : Steven Holzner
Download or read book Differential Equations Workbook For Dummies written by Steven Holzner and published by John Wiley & Sons. This book was released on 2009-06-29 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: Make sense of these difficult equations Improve your problem-solving skills Practice with clear, concise examples Score higher on standardized tests and exams Get the confidence and the skills you need to master differential equations! Need to know how to solve differential equations? This easy-to-follow, hands-on workbook helps you master the basic concepts and work through the types of problems you'll encounter in your coursework. You get valuable exercises, problem-solving shortcuts, plenty of workspace, and step-by-step solutions to every equation. You'll also memorize the most-common types of differential equations, see how to avoid common mistakes, get tips and tricks for advanced problems, improve your exam scores, and much more! More than 100 Problems! Detailed, fully worked-out solutions to problems The inside scoop on first, second, and higher order differential equations A wealth of advanced techniques, including power series THE DUMMIES WORKBOOK WAY Quick, refresher explanations Step-by-step procedures Hands-on practice exercises Ample workspace to work out problems Online Cheat Sheet A dash of humor and fun
Book Synopsis Introduction to Differential Equations: Second Edition by : Michael E. Taylor
Download or read book Introduction to Differential Equations: Second Edition written by Michael E. Taylor and published by American Mathematical Soc.. This book was released on 2021-10-21 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text introduces students to the theory and practice of differential equations, which are fundamental to the mathematical formulation of problems in physics, chemistry, biology, economics, and other sciences. The book is ideally suited for undergraduate or beginning graduate students in mathematics, and will also be useful for students in the physical sciences and engineering who have already taken a three-course calculus sequence. This second edition incorporates much new material, including sections on the Laplace transform and the matrix Laplace transform, a section devoted to Bessel's equation, and sections on applications of variational methods to geodesics and to rigid body motion. There is also a more complete treatment of the Runge-Kutta scheme, as well as numerous additions and improvements to the original text. Students finishing this book will be well prepare
Book Synopsis Linear Ordinary Differential Equations by : Earl A. Coddington
Download or read book Linear Ordinary Differential Equations written by Earl A. Coddington and published by SIAM. This book was released on 1997-01-01 with total page 353 pages. Available in PDF, EPUB and Kindle. Book excerpt: Linear Ordinary Differential Equations, a text for advanced undergraduate or beginning graduate students, presents a thorough development of the main topics in linear differential equations. A rich collection of applications, examples, and exercises illustrates each topic. The authors reinforce students' understanding of calculus, linear algebra, and analysis while introducing the many applications of differential equations in science and engineering. Three recurrent themes run through the book. The methods of linear algebra are applied directly to the analysis of systems with constant or periodic coefficients and serve as a guide in the study of eigenvalues and eigenfunction expansions. The use of power series, beginning with the matrix exponential function leads to the special functions solving classical equations. Techniques from real analysis illuminate the development of series solutions, existence theorems for initial value problems, the asymptotic behavior solutions, and the convergence of eigenfunction expansions.
Download or read book Notes on Diffy Qs written by Jiri Lebl and published by . This book was released on 2019-11-13 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: Version 6.0. An introductory course on differential equations aimed at engineers. The book covers first order ODEs, higher order linear ODEs, systems of ODEs, Fourier series and PDEs, eigenvalue problems, the Laplace transform, and power series methods. It has a detailed appendix on linear algebra. The book was developed and used to teach Math 286/285 at the University of Illinois at Urbana-Champaign, and in the decade since, it has been used in many classrooms, ranging from small community colleges to large public research universities. See https: //www.jirka.org/diffyqs/ for more information, updates, errata, and a list of classroom adoptions.
Book Synopsis Ordinary Differential Equations and Dynamical Systems by : Gerald Teschl
Download or read book Ordinary Differential Equations and Dynamical Systems written by Gerald Teschl and published by American Mathematical Society. This book was released on 2024-01-12 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a self-contained introduction to ordinary differential equations and dynamical systems suitable for beginning graduate students. The first part begins with some simple examples of explicitly solvable equations and a first glance at qualitative methods. Then the fundamental results concerning the initial value problem are proved: existence, uniqueness, extensibility, dependence on initial conditions. Furthermore, linear equations are considered, including the Floquet theorem, and some perturbation results. As somewhat independent topics, the Frobenius method for linear equations in the complex domain is established and Sturm–Liouville boundary value problems, including oscillation theory, are investigated. The second part introduces the concept of a dynamical system. The Poincaré–Bendixson theorem is proved, and several examples of planar systems from classical mechanics, ecology, and electrical engineering are investigated. Moreover, attractors, Hamiltonian systems, the KAM theorem, and periodic solutions are discussed. Finally, stability is studied, including the stable manifold and the Hartman–Grobman theorem for both continuous and discrete systems. The third part introduces chaos, beginning with the basics for iterated interval maps and ending with the Smale–Birkhoff theorem and the Melnikov method for homoclinic orbits. The text contains almost three hundred exercises. Additionally, the use of mathematical software systems is incorporated throughout, showing how they can help in the study of differential equations.
Book Synopsis Second Order Differential Equations by : Gerhard Kristensson
Download or read book Second Order Differential Equations written by Gerhard Kristensson and published by Springer Science & Business Media. This book was released on 2010-08-05 with total page 225 pages. Available in PDF, EPUB and Kindle. Book excerpt: Second Order Differential Equations presents a classical piece of theory concerning hypergeometric special functions as solutions of second-order linear differential equations. The theory is presented in an entirely self-contained way, starting with an introduction of the solution of the second-order differential equations and then focusingon the systematic treatment and classification of these solutions. Each chapter contains a set of problems which help reinforce the theory. Some of the preliminaries are covered in appendices at the end of the book, one of which provides an introduction to Poincaré-Perron theory, and the appendix also contains a new way of analyzing the asymptomatic behavior of solutions of differential equations. This textbook is appropriate for advanced undergraduate and graduate students in Mathematics, Physics, and Engineering interested in Ordinary and Partial Differntial Equations. A solutions manual is available online.
Book Synopsis Partial Differential Equations by : Walter A. Strauss
Download or read book Partial Differential Equations written by Walter A. Strauss and published by John Wiley & Sons. This book was released on 2007-12-21 with total page 467 pages. Available in PDF, EPUB and Kindle. Book excerpt: Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.
Book Synopsis Ordinary Differential Equations by : Morris Tenenbaum
Download or read book Ordinary Differential Equations written by Morris Tenenbaum and published by Courier Corporation. This book was released on 1985-10-01 with total page 852 pages. Available in PDF, EPUB and Kindle. Book excerpt: Skillfully organized introductory text examines origin of differential equations, then defines basic terms and outlines the general solution of a differential equation. Subsequent sections deal with integrating factors; dilution and accretion problems; linearization of first order systems; Laplace Transforms; Newton's Interpolation Formulas, more.
Book Synopsis Reprint and Circular Series of the National Research Council by :
Download or read book Reprint and Circular Series of the National Research Council written by and published by . This book was released on 1927 with total page 948 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Ordinary Differential Equations and Mechanical Systems by : Jan Awrejcewicz
Download or read book Ordinary Differential Equations and Mechanical Systems written by Jan Awrejcewicz and published by Springer. This book was released on 2014-09-17 with total page 621 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book applies a step-by-step treatment of the current state-of-the-art of ordinary differential equations used in modeling of engineering systems/processes and beyond. It covers systematically ordered problems, beginning with first and second order ODEs, linear and higher-order ODEs of polynomial form, theory and criteria of similarity, modeling approaches, phase plane and phase space concepts, stability optimization and ending on chaos and synchronization. Presenting both an overview of the theory of the introductory differential equations in the context of applicability and a systematic treatment of modeling of numerous engineering and physical problems through linear and non-linear ODEs, the volume is self-contained, yet serves both scientific and engineering interests. The presentation relies on a general treatment, analytical and numerical methods, concrete examples and engineering intuition. The scientific background used is well balanced between elementary and advanced level, making it as a unique self-contained source for both theoretically and application oriented graduate and doctoral students, university teachers, researchers and engineers of mechanical, civil and mechatronic engineering.
Author :Sergeĭ I︠U︡rʹevich Slavi︠a︡nov Publisher :Oxford University Press, USA ISBN 13 :9780198505730 Total Pages :318 pages Book Rating :4.5/5 (57 download)
Book Synopsis Special Functions by : Sergeĭ I︠U︡rʹevich Slavi︠a︡nov
Download or read book Special Functions written by Sergeĭ I︠U︡rʹevich Slavi︠a︡nov and published by Oxford University Press, USA. This book was released on 2000 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: The subject of this book is the theory of special functions, not considered as a list of functions exhibiting a certain range of properties, but based on the unified study of singularities of second-order ordinary differential equations in the complex domain. The number and characteristics of the singularities serve as a basis for classification of each individual special function. Links between linear special functions (as solutions of linear second-order equations), and non-linear special functions (as solutions of Painlevé equations) are presented as a basic and new result. Many applications to different areas of physics are shown and discussed. The book is written from a practical point of view and will address all those scientists whose work involves applications of mathematical methods. Lecturers, graduate students and researchers will find this a useful text and reference work.
Book Synopsis Scientific and Technical Aerospace Reports by :
Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1982 with total page 648 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.
Book Synopsis New Methods for Chaotic Dynamics by : Nikolai Aleksandrovich Magnitskii
Download or read book New Methods for Chaotic Dynamics written by Nikolai Aleksandrovich Magnitskii and published by World Scientific. This book was released on 2006 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a new theory on the transition to dynamical chaos for two-dimensional nonautonomous, and three-dimensional, many-dimensional and infinitely-dimensional autonomous nonlinear dissipative systems of differential equations including nonlinear partial differential equations and differential equations with delay arguments. The transition is described from the Feigenbaum cascade of period doubling bifurcations of the original singular cycle to the complete or incomplete Sharkovskii subharmonic cascade of bifurcations of stable limit cycles with arbitrary period and finally to the complete or incomplete homoclinic cascade of bifurcations. The book presents a distinct view point on the principles of formation, scenarios of occurrence and ways of control of chaotic motion in nonlinear dissipative dynamical systems. All theoretical results and conclusions of the theory are strictly proved and confirmed by numerous examples, illustrations and numerical calculations. Sample Chapter(s). Chapter 1: Systems of Ordinary Differential Equations (1,736 KB). Contents: Systems of Ordinary Differential Equations; Bifurcations in Nonlinear Systems of Ordinary Differential Equations; Chaotic Systems of Ordinary Differential Equations; Principles of the Theory of Dynamical Chaos in Dissipative Systems of Ordinary Differential Equations; Dynamical Chaos in Infinitely-Dimensional Systems of Differential Equations; Chaos Control in Systems of Differential Equations. Readership: Graduate students and researchers in complex and chaotic dynamical systems.
Book Synopsis Differential Equations by : Bruce P. Conrad
Download or read book Differential Equations written by Bruce P. Conrad and published by . This book was released on 2003 with total page 538 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written for beginners, this well organized introduction promotes a solid understanding of differential equations that is flexible enough to meet the needs of many different disciplines. With less emphasis on formal calculation than found in other books all the basic methods are covered—first order equations, separation, exact form, and linear equations—as well as higher order cases, linear equation with constant and variable coefficients, Laplace transform methods, and boundary value problems. The book'ssystems focus induces an intuitive understanding of the concept of a solution of an initial value problem in order to resolve potential confusion about what is being approximated when a numerical method is used. The author outlines first order equations including linear and nonlinear equations and systems of differential equations, as well as linear differential equations including the Laplace transform, and variable coefficients, nonlinear differential equations, and boundary problems and PDEs. For those looking for a solid introduction to differential equations.
Book Synopsis Non-Linear Differential Equations and Dynamical Systems by : Luis Manuel Braga da Costa Campos
Download or read book Non-Linear Differential Equations and Dynamical Systems written by Luis Manuel Braga da Costa Campos and published by CRC Press. This book was released on 2019-11-05 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: Non-Linear Differential Equations and Dynamical Systems is the second book within Ordinary Differential Equations with Applications to Trajectories and Vibrations, Six-volume Set. As a set, they are the fourth volume in the series Mathematics and Physics Applied to Science and Technology. This second book consists of two chapters (chapters 3 and 4 of the set). The first chapter considers non-linear differential equations of first order, including variable coefficients. A first-order differential equation is equivalent to a first-order differential in two variables. The differentials of order higher than the first and with more than two variables are also considered. The applications include the representation of vector fields by potentials. The second chapter in the book starts with linear oscillators with coefficients varying with time, including parametric resonance. It proceeds to non-linear oscillators including non-linear resonance, amplitude jumps, and hysteresis. The non-linear restoring and friction forces also apply to electromechanical dynamos. These are examples of dynamical systems with bifurcations that may lead to chaotic motions. Presents general first-order differential equations including non-linear like the Ricatti equation Discusses differentials of the first or higher order in two or more variables Includes discretization of differential equations as finite difference equations Describes parametric resonance of linear time dependent oscillators specified by the Mathieu functions and other methods Examines non-linear oscillations and damping of dynamical systems including bifurcations and chaotic motions
Download or read book Canadian Mathematical Bulletin written by and published by . This book was released on 1968 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis A Textbook on Ordinary Differential Equations by : Shair Ahmad
Download or read book A Textbook on Ordinary Differential Equations written by Shair Ahmad and published by Springer. This book was released on 2015-06-05 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers readers a primer on the theory and applications of Ordinary Differential Equations. The style used is simple, yet thorough and rigorous. Each chapter ends with a broad set of exercises that range from the routine to the more challenging and thought-provoking. Solutions to selected exercises can be found at the end of the book. The book contains many interesting examples on topics such as electric circuits, the pendulum equation, the logistic equation, the Lotka-Volterra system, the Laplace Transform, etc., which introduce students to a number of interesting aspects of the theory and applications. The work is mainly intended for students of Mathematics, Physics, Engineering, Computer Science and other areas of the natural and social sciences that use ordinary differential equations, and who have a firm grasp of Calculus and a minimal understanding of the basic concepts used in Linear Algebra. It also studies a few more advanced topics, such as Stability Theory and Boundary Value Problems, which may be suitable for more advanced undergraduate or first-year graduate students. The second edition has been revised to correct minor errata, and features a number of carefully selected new exercises, together with more detailed explanations of some of the topics. A complete Solutions Manual, containing solutions to all the exercises published in the book, is available. Instructors who wish to adopt the book may request the manual by writing directly to one of the authors.