Set Compound Decision Estimation Under Entropy Loss in Exponential Families

Download Set Compound Decision Estimation Under Entropy Loss in Exponential Families PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 118 pages
Book Rating : 4.3/5 (129 download)

DOWNLOAD NOW!


Book Synopsis Set Compound Decision Estimation Under Entropy Loss in Exponential Families by : Chih-hui Liu

Download or read book Set Compound Decision Estimation Under Entropy Loss in Exponential Families written by Chih-hui Liu and published by . This book was released on 1997 with total page 118 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Mathematical Reviews

Download Mathematical Reviews PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 826 pages
Book Rating : 4.X/5 (6 download)

DOWNLOAD NOW!


Book Synopsis Mathematical Reviews by :

Download or read book Mathematical Reviews written by and published by . This book was released on 2000 with total page 826 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Dissertation Abstracts International

Download Dissertation Abstracts International PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 950 pages
Book Rating : 4.F/5 ( download)

DOWNLOAD NOW!


Book Synopsis Dissertation Abstracts International by :

Download or read book Dissertation Abstracts International written by and published by . This book was released on 1998 with total page 950 pages. Available in PDF, EPUB and Kindle. Book excerpt:

American Doctoral Dissertations

Download American Doctoral Dissertations PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 760 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis American Doctoral Dissertations by :

Download or read book American Doctoral Dissertations written by and published by . This book was released on 1989 with total page 760 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Applied Statistical Science III

Download Applied Statistical Science III PDF Online Free

Author :
Publisher :
ISBN 13 : 9781560725817
Total Pages : 458 pages
Book Rating : 4.7/5 (258 download)

DOWNLOAD NOW!


Book Synopsis Applied Statistical Science III by : Mohammad Ahsanullah

Download or read book Applied Statistical Science III written by Mohammad Ahsanullah and published by . This book was released on 1998 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: CONTENTS: Partially Adaptive Rank and Regression Rank Scores Tests in Linear Models; An Analysis of Nonoparametric Smoothers; Supercritical Branching Random Walk in D-Dimensional Random Environment; Lack of Fit Tests in Regression With Non-Random Design; Asymptotics of the Deepest Line; Multivariate Rank Statistics Processes and Change Point Analysis; Improved Estimation of the Parameters of an Autoagressive Gaussian Process Under Uncertain Restrictions; Testing Normality For Censored Data; Large Sample theory For Estimators of the Moments Based On Synthetic Data Under Randomly Right-Censoring; The Stein Phenomenon in Simultaneous Estimation: A Review; Two Techniques of Integration By Parts and Some Applications; Conditional Confidence Intervals of Regression Coefficients Following Rejection of Preliminary Test; Order Preserving Estimators of Eigenvalues of the Scale Matrix in the Multivariate F Distribution Under Stein's Loss Function; Sequential Estimation of the Man of An Exponential Distribution Via Partial Piece Wise Sampling; Recent Developments on Probability Matching Priors; On the Informative Presentation of Likelihood; Bahadur Risk, Exponential Families and Recursive Estimation; Some Quick Estimators Based on Sample Maxima; Inferences of Power Function Distribution Based on Ordered Random Variables; Estimation of the Location Parameter of A Cauchy Distribution Using A Ranked Set Sample; On A Delayed Service Queuing System With Random Server Capacity and Impatient Customers; Canonical Co-ordinated for Graphical Representation of Multivariate Data; Some Single Use Confidence Regions in Multivariate Calibration Problem; The Likelihood Ratio Test of Non-Nested Linear Regression Models; Exact Power of Classical Tests for Bivariate Linear Hypothesis; Characterisation of the Gamma and the Complex Case Wishart Densities; Jack-knife and Robust Estimation for the Parameters in Pharmocokinetes.

Statistics Subject Indexes from Mathematical Reviews

Download Statistics Subject Indexes from Mathematical Reviews PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 540 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Statistics Subject Indexes from Mathematical Reviews by : American Mathematical Society

Download or read book Statistics Subject Indexes from Mathematical Reviews written by American Mathematical Society and published by . This book was released on 1987 with total page 540 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Introduction to Probability

Download Introduction to Probability PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1466575573
Total Pages : 599 pages
Book Rating : 4.4/5 (665 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Probability by : Joseph K. Blitzstein

Download or read book Introduction to Probability written by Joseph K. Blitzstein and published by CRC Press. This book was released on 2014-07-24 with total page 599 pages. Available in PDF, EPUB and Kindle. Book excerpt: Developed from celebrated Harvard statistics lectures, Introduction to Probability provides essential language and tools for understanding statistics, randomness, and uncertainty. The book explores a wide variety of applications and examples, ranging from coincidences and paradoxes to Google PageRank and Markov chain Monte Carlo (MCMC). Additional application areas explored include genetics, medicine, computer science, and information theory. The print book version includes a code that provides free access to an eBook version. The authors present the material in an accessible style and motivate concepts using real-world examples. Throughout, they use stories to uncover connections between the fundamental distributions in statistics and conditioning to reduce complicated problems to manageable pieces. The book includes many intuitive explanations, diagrams, and practice problems. Each chapter ends with a section showing how to perform relevant simulations and calculations in R, a free statistical software environment.

Current Index to Statistics, Applications, Methods and Theory

Download Current Index to Statistics, Applications, Methods and Theory PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 948 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Current Index to Statistics, Applications, Methods and Theory by :

Download or read book Current Index to Statistics, Applications, Methods and Theory written by and published by . This book was released on 1999 with total page 948 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Current Index to Statistics (CIS) is a bibliographic index of publications in statistics, probability, and related fields.

Bayesian Data Analysis, Third Edition

Download Bayesian Data Analysis, Third Edition PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1439840954
Total Pages : 677 pages
Book Rating : 4.4/5 (398 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Data Analysis, Third Edition by : Andrew Gelman

Download or read book Bayesian Data Analysis, Third Edition written by Andrew Gelman and published by CRC Press. This book was released on 2013-11-01 with total page 677 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.

Cumulative Index to IMS Scientific Journals, 1960-1989

Download Cumulative Index to IMS Scientific Journals, 1960-1989 PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 582 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Cumulative Index to IMS Scientific Journals, 1960-1989 by : Bruce E. Trumbo

Download or read book Cumulative Index to IMS Scientific Journals, 1960-1989 written by Bruce E. Trumbo and published by . This book was released on 1990 with total page 582 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Graphical Models, Exponential Families, and Variational Inference

Download Graphical Models, Exponential Families, and Variational Inference PDF Online Free

Author :
Publisher : Now Publishers Inc
ISBN 13 : 1601981848
Total Pages : 324 pages
Book Rating : 4.6/5 (19 download)

DOWNLOAD NOW!


Book Synopsis Graphical Models, Exponential Families, and Variational Inference by : Martin J. Wainwright

Download or read book Graphical Models, Exponential Families, and Variational Inference written by Martin J. Wainwright and published by Now Publishers Inc. This book was released on 2008 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: The core of this paper is a general set of variational principles for the problems of computing marginal probabilities and modes, applicable to multivariate statistical models in the exponential family.

Bayesian Theory

Download Bayesian Theory PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 047031771X
Total Pages : 608 pages
Book Rating : 4.4/5 (73 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Theory by : José M. Bernardo

Download or read book Bayesian Theory written by José M. Bernardo and published by John Wiley & Sons. This book was released on 2009-09-25 with total page 608 pages. Available in PDF, EPUB and Kindle. Book excerpt: This highly acclaimed text, now available in paperback, provides a thorough account of key concepts and theoretical results, with particular emphasis on viewing statistical inference as a special case of decision theory. Information-theoretic concepts play a central role in the development of the theory, which provides, in particular, a detailed discussion of the problem of specification of so-called prior ignorance . The work is written from the authors s committed Bayesian perspective, but an overview of non-Bayesian theories is also provided, and each chapter contains a wide-ranging critical re-examination of controversial issues. The level of mathematics used is such that most material is accessible to readers with knowledge of advanced calculus. In particular, no knowledge of abstract measure theory is assumed, and the emphasis throughout is on statistical concepts rather than rigorous mathematics. The book will be an ideal source for all students and researchers in statistics, mathematics, decision analysis, economic and business studies, and all branches of science and engineering, who wish to further their understanding of Bayesian statistics

Probabilistic Graphical Models

Download Probabilistic Graphical Models PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262258358
Total Pages : 1270 pages
Book Rating : 4.2/5 (622 download)

DOWNLOAD NOW!


Book Synopsis Probabilistic Graphical Models by : Daphne Koller

Download or read book Probabilistic Graphical Models written by Daphne Koller and published by MIT Press. This book was released on 2009-07-31 with total page 1270 pages. Available in PDF, EPUB and Kindle. Book excerpt: A general framework for constructing and using probabilistic models of complex systems that would enable a computer to use available information for making decisions. Most tasks require a person or an automated system to reason—to reach conclusions based on available information. The framework of probabilistic graphical models, presented in this book, provides a general approach for this task. The approach is model-based, allowing interpretable models to be constructed and then manipulated by reasoning algorithms. These models can also be learned automatically from data, allowing the approach to be used in cases where manually constructing a model is difficult or even impossible. Because uncertainty is an inescapable aspect of most real-world applications, the book focuses on probabilistic models, which make the uncertainty explicit and provide models that are more faithful to reality. Probabilistic Graphical Models discusses a variety of models, spanning Bayesian networks, undirected Markov networks, discrete and continuous models, and extensions to deal with dynamical systems and relational data. For each class of models, the text describes the three fundamental cornerstones: representation, inference, and learning, presenting both basic concepts and advanced techniques. Finally, the book considers the use of the proposed framework for causal reasoning and decision making under uncertainty. The main text in each chapter provides the detailed technical development of the key ideas. Most chapters also include boxes with additional material: skill boxes, which describe techniques; case study boxes, which discuss empirical cases related to the approach described in the text, including applications in computer vision, robotics, natural language understanding, and computational biology; and concept boxes, which present significant concepts drawn from the material in the chapter. Instructors (and readers) can group chapters in various combinations, from core topics to more technically advanced material, to suit their particular needs.

Decision Making Under Uncertainty

Download Decision Making Under Uncertainty PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262331713
Total Pages : 350 pages
Book Rating : 4.2/5 (623 download)

DOWNLOAD NOW!


Book Synopsis Decision Making Under Uncertainty by : Mykel J. Kochenderfer

Download or read book Decision Making Under Uncertainty written by Mykel J. Kochenderfer and published by MIT Press. This book was released on 2015-07-24 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to decision making under uncertainty from a computational perspective, covering both theory and applications ranging from speech recognition to airborne collision avoidance. Many important problems involve decision making under uncertainty—that is, choosing actions based on often imperfect observations, with unknown outcomes. Designers of automated decision support systems must take into account the various sources of uncertainty while balancing the multiple objectives of the system. This book provides an introduction to the challenges of decision making under uncertainty from a computational perspective. It presents both the theory behind decision making models and algorithms and a collection of example applications that range from speech recognition to aircraft collision avoidance. Focusing on two methods for designing decision agents, planning and reinforcement learning, the book covers probabilistic models, introducing Bayesian networks as a graphical model that captures probabilistic relationships between variables; utility theory as a framework for understanding optimal decision making under uncertainty; Markov decision processes as a method for modeling sequential problems; model uncertainty; state uncertainty; and cooperative decision making involving multiple interacting agents. A series of applications shows how the theoretical concepts can be applied to systems for attribute-based person search, speech applications, collision avoidance, and unmanned aircraft persistent surveillance. Decision Making Under Uncertainty unifies research from different communities using consistent notation, and is accessible to students and researchers across engineering disciplines who have some prior exposure to probability theory and calculus. It can be used as a text for advanced undergraduate and graduate students in fields including computer science, aerospace and electrical engineering, and management science. It will also be a valuable professional reference for researchers in a variety of disciplines.

Statistical Consequences of Fat Tails

Download Statistical Consequences of Fat Tails PDF Online Free

Author :
Publisher :
ISBN 13 : 9781544508054
Total Pages : pages
Book Rating : 4.5/5 (8 download)

DOWNLOAD NOW!


Book Synopsis Statistical Consequences of Fat Tails by : Nassim Nicholas Taleb

Download or read book Statistical Consequences of Fat Tails written by Nassim Nicholas Taleb and published by . This book was released on 2020-06-30 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The book investigates the misapplication of conventional statistical techniques to fat tailed distributions and looks for remedies, when possible. Switching from thin tailed to fat tailed distributions requires more than "changing the color of the dress." Traditional asymptotics deal mainly with either n=1 or n=∞, and the real world is in between, under the "laws of the medium numbers"-which vary widely across specific distributions. Both the law of large numbers and the generalized central limit mechanisms operate in highly idiosyncratic ways outside the standard Gaussian or Levy-Stable basins of convergence. A few examples: - The sample mean is rarely in line with the population mean, with effect on "naïve empiricism," but can be sometimes be estimated via parametric methods. - The "empirical distribution" is rarely empirical. - Parameter uncertainty has compounding effects on statistical metrics. - Dimension reduction (principal components) fails. - Inequality estimators (Gini or quantile contributions) are not additive and produce wrong results. - Many "biases" found in psychology become entirely rational under more sophisticated probability distributions. - Most of the failures of financial economics, econometrics, and behavioral economics can be attributed to using the wrong distributions. This book, the first volume of the Technical Incerto, weaves a narrative around published journal articles.

Statistical Decision Theory

Download Statistical Decision Theory PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 147571727X
Total Pages : 440 pages
Book Rating : 4.4/5 (757 download)

DOWNLOAD NOW!


Book Synopsis Statistical Decision Theory by : James Berger

Download or read book Statistical Decision Theory written by James Berger and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: Decision theory is generally taught in one of two very different ways. When of opti taught by theoretical statisticians, it tends to be presented as a set of mathematical techniques mality principles, together with a collection of various statistical procedures. When useful in establishing the optimality taught by applied decision theorists, it is usually a course in Bayesian analysis, showing how this one decision principle can be applied in various practical situations. The original goal I had in writing this book was to find some middle ground. I wanted a book which discussed the more theoretical ideas and techniques of decision theory, but in a manner that was constantly oriented towards solving statistical problems. In particular, it seemed crucial to include a discussion of when and why the various decision prin ciples should be used, and indeed why decision theory is needed at all. This original goal seemed indicated by my philosophical position at the time, which can best be described as basically neutral. I felt that no one approach to decision theory (or statistics) was clearly superior to the others, and so planned a rather low key and impartial presentation of the competing ideas. In the course of writing the book, however, I turned into a rabid Bayesian. There was no single cause for this conversion; just a gradual realization that things seemed to ultimately make sense only when looked at from the Bayesian viewpoint.

Information Geometry and Its Applications

Download Information Geometry and Its Applications PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 4431559787
Total Pages : 378 pages
Book Rating : 4.4/5 (315 download)

DOWNLOAD NOW!


Book Synopsis Information Geometry and Its Applications by : Shun-ichi Amari

Download or read book Information Geometry and Its Applications written by Shun-ichi Amari and published by Springer. This book was released on 2016-02-02 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first comprehensive book on information geometry, written by the founder of the field. It begins with an elementary introduction to dualistic geometry and proceeds to a wide range of applications, covering information science, engineering, and neuroscience. It consists of four parts, which on the whole can be read independently. A manifold with a divergence function is first introduced, leading directly to dualistic structure, the heart of information geometry. This part (Part I) can be apprehended without any knowledge of differential geometry. An intuitive explanation of modern differential geometry then follows in Part II, although the book is for the most part understandable without modern differential geometry. Information geometry of statistical inference, including time series analysis and semiparametric estimation (the Neyman–Scott problem), is demonstrated concisely in Part III. Applications addressed in Part IV include hot current topics in machine learning, signal processing, optimization, and neural networks. The book is interdisciplinary, connecting mathematics, information sciences, physics, and neurosciences, inviting readers to a new world of information and geometry. This book is highly recommended to graduate students and researchers who seek new mathematical methods and tools useful in their own fields.