Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Quantum Simulation
Download Quantum Simulation full books in PDF, epub, and Kindle. Read online Quantum Simulation ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Quantum Circuit Simulation by : George F. Viamontes
Download or read book Quantum Circuit Simulation written by George F. Viamontes and published by Springer Science & Business Media. This book was released on 2009-08-04 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum Circuit Simulation covers the fundamentals of linear algebra and introduces basic concepts of quantum physics needed to understand quantum circuits and algorithms. It requires only basic familiarity with algebra, graph algorithms and computer engineering. After introducing necessary background, the authors describe key simulation techniques that have so far been scattered throughout the research literature in physics, computer science, and computer engineering. Quantum Circuit Simulation also illustrates the development of software for quantum simulation by example of the QuIDDPro package, which is freely available and can be used by students of quantum information as a "quantum calculator."
Book Synopsis Quantum Simulations with Photons and Polaritons by : Dimitris G. Angelakis
Download or read book Quantum Simulations with Photons and Polaritons written by Dimitris G. Angelakis and published by Springer. This book was released on 2017-05-03 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reviews progress towards quantum simulators based on photonic and hybrid light-matter systems, covering theoretical proposals and recent experimental work. Quantum simulators are specially designed quantum computers. Their main aim is to simulate and understand complex and inaccessible quantum many-body phenomena found or predicted in condensed matter physics, materials science and exotic quantum field theories. Applications will include the engineering of smart materials, robust optical or electronic circuits, deciphering quantum chemistry and even the design of drugs. Technological developments in the fields of interfacing light and matter, especially in many-body quantum optics, have motivated recent proposals for quantum simulators based on strongly correlated photons and polaritons generated in hybrid light-matter systems. The latter have complementary strengths to cold atom and ion based simulators and they can probe for example out of equilibrium phenomena in a natural driven-dissipative setting. This book covers some of the most important works in this area reviewing the proposal for Mott transitions and Luttinger liquid physics with light, to simulating interacting relativistic theories, topological insulators and gauge field physics. The stage of the field now is at a point where on top of the numerous theory proposals; experiments are also reported. Connecting to the theory proposals presented in the chapters, the main experimental quantum technology platforms developed from groups worldwide to realize photonic and polaritonic simulators in the laboratory are also discussed. These include coupled microwave resonator arrays in superconducting circuits, semiconductor based polariton systems, and integrated quantum photonic chips. This is the first book dedicated to photonic approaches to quantum simulation, reviewing the fundamentals for the researcher new to the field, and providing a complete reference for the graduate student starting or already undergoing PhD studies in this area.
Book Synopsis Analogue Quantum Simulation by : Dominik Hangleiter
Download or read book Analogue Quantum Simulation written by Dominik Hangleiter and published by Springer Nature. This book was released on 2022-01-21 with total page 153 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents fresh insights into analogue quantum simulation. It argues that these simulations are a new instrument of science. They require a bespoke philosophical analysis, sensitive to both the similarities to and the differences with conventional scientific practices such as analogical argument, experimentation, and classical simulation. The analysis situates the various forms of analogue quantum simulation on the methodological map of modern science. In doing so, it clarifies the functions that analogue quantum simulation serves in scientific practice. To this end, the authors introduce a number of important terminological distinctions. They establish that analogue quantum ‘computation' and ‘emulation' are distinct scientific practices and lead to distinct forms of scientific understanding. The authors also demonstrate the normative value of the computation vs. emulation distinction at both an epistemic and a pragmatic level. The volume features a range of detailed case studies focusing on: i) cold atom computation of many-body localisation and the Higgs mode; ii) photonic emulation of quantum effects in biological systems; and iii) emulation of Hawing radiation in dispersive optical media. Overall, readers will discover a normative framework to isolate and support the goals of scientists undertaking analogue quantum simulation and emulation. This framework will prove useful to both working scientists and philosophers of science interested in cutting-edge scientific practice.
Download or read book Quantum Simulation written by Chad Orzel and published by Institute of Physics Publishing. This book was released on 2017-06-12 with total page 22 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the most active areas in atomic, molecular and optical physics is the use of ultracold atomic gases in optical lattices to simulate the behaviour of electrons in condensed matter systems. The larger mass, longer length scale, and tuneable interactions in these systems allow the dynamics of atoms moving in these systems to be followed in real time, and resonant light scattering by the atoms allows this motion to be probed on a microscopic scale using site-resolved imaging. This book reviews the physics of Hubbard-type models for both bosons and fermions in an optical lattice, which give rise to a rich variety of insulating and conducting phases depending on the lattice properties and interparticle interactions. It also discusses the effect of disorder on the transport of atoms in these models, and the recently discovered phenomenon of many-body localization. It presents several examples of experiments using both density and momentum imaging and quantum gas microscopy to study the motion of atoms in optical lattices. These illustrate the power and flexibility of ultracold-lattice analogues for exploring exotic states of matter at an unprecedented level of precision.
Author :National Academy of Engineering Publisher :National Academies Press ISBN 13 :0309487501 Total Pages :125 pages Book Rating :4.3/5 (94 download)
Book Synopsis Frontiers of Engineering by : National Academy of Engineering
Download or read book Frontiers of Engineering written by National Academy of Engineering and published by National Academies Press. This book was released on 2019-02-28 with total page 125 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents papers on the topics covered at the National Academy of Engineering's 2018 US Frontiers of Engineering Symposium. Every year the symposium brings together 100 outstanding young leaders in engineering to share their cutting-edge research and innovations in selected areas. The 2018 symposium was held September 5-7 and hosted by MIT Lincoln Laboratory in Lexington, Massachusetts. The intent of this book is to convey the excitement of this unique meeting and to highlight innovative developments in engineering research and technical work.
Book Synopsis The Simulation Hypothesis by : Rizwan Virk
Download or read book The Simulation Hypothesis written by Rizwan Virk and published by Bayview Books, LLC. This book was released on 2019-03-31 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Simulation Hypothesis, by best-selling author, renowned MIT computer scientist and Silicon Valley video game designer Rizwan Virk, is the first serious book to explain one of the most daring and consequential theories of our time. Riz is the Executive Director of Play Labs @ MIT, a video game startup incubator at the MIT Game Lab. Drawing from research and concepts from computer science, artificial intelligence, video games, quantum physics, and referencing both speculative fiction and ancient eastern spiritual texts, Virk shows how all of these traditions come together to point to the idea that we may be inside a simulated reality like the Matrix. The Simulation Hypothesis is the idea that our physical reality, far from being a solid physical universe, is part of an increasingly sophisticated video game-like simulation, where we all have multiple lives, consisting of pixels with its own internal clock run by some giant Artificial Intelligence. Simulation theory explains some of the biggest mysteries of quantum and relativistic physics, such as quantum indeterminacy, parallel universes, and the integral nature of the speed of light. Recently, the idea that we may be living in a giant video game has received a lot of attention: “There’s a one in a billion chance we are not living in a simulation” -Elon Musk “I find it hard to argue we are not in a simulation.” -Neil deGrasse Tyson “We are living in computer generated reality.” -Philip K. Dick Video game technology has developed from basic arcade and text adventures to MMORPGs. Video game designer Riz Virk shows how these games may continue to evolve in the future, including virtual reality, augmented reality, Artificial Intelligence, and quantum computing. This book shows how this evolution could lead us to the point of being able to develop all encompassing virtual worlds like the Oasis in Ready Player One, or the simulated reality in the Matrix. While the idea sounds like science fiction, many scientists, engineers, and professors have given the Simulation Hypothesis serious consideration. Futurist Ray Kurzweil has popularized the idea of downloading our consciousness into a silicon based device, which would mean we are just digital information after all. Some, like Oxford lecturer Nick Bostrom, goes further and thinks we may in fact be artificially intelligent consciousness inside such a simulation already! But the Simulation Hypothesis is not just a modern idea. Philosophers like Plato have been telling us that we live in a “cave” and can only see shadows of the real world. Mystics of all traditions have long contended that we are living in some kind of “illusion “and that there are other realities which we can access with our minds. While even Judeo-Christian traditions have this idea, Eastern traditions like Buddhism and Hinduism make this idea part of their core tradition — that we are inside a dream world (“Maya” or illusion, or Vishnu’s Dream), and we have “multiple lives” playing different characters when one dies, continuing to gain experience and “level up” after completing certain challenges. Sounds a lot like a video game! Whether you are a computer scientist, a fan of science fiction like the Matrix movies, a video game enthusiast, or a spiritual seeker, The Simulation Hypothesis touches on all these areas, and you will never look at the world the same way again!
Book Synopsis Computational Physics by : Philipp Scherer
Download or read book Computational Physics written by Philipp Scherer and published by Springer Science & Business Media. This book was released on 2013-07-17 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook presents basic and advanced computational physics in a very didactic style. It contains very-well-presented and simple mathematical descriptions of many of the most important algorithms used in computational physics. The first part of the book discusses the basic numerical methods. The second part concentrates on simulation of classical and quantum systems. Several classes of integration methods are discussed including not only the standard Euler and Runge Kutta method but also multi-step methods and the class of Verlet methods, which is introduced by studying the motion in Liouville space. A general chapter on the numerical treatment of differential equations provides methods of finite differences, finite volumes, finite elements and boundary elements together with spectral methods and weighted residual based methods. The book gives simple but non trivial examples from a broad range of physical topics trying to give the reader insight into not only the numerical treatment but also simulated problems. Different methods are compared with regard to their stability and efficiency. The exercises in the book are realised as computer experiments.
Book Synopsis Quantum Mechanics Simulations by : John R. Hiller
Download or read book Quantum Mechanics Simulations written by John R. Hiller and published by . This book was released on 1995-03-03 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Consortium for Upper Level Physics Software (CUPS) has developed a comprehensive series of Nine Book/Software packages that Wiley will publish in FY '95 and '96. CUPS is an international group of 27 physicists, all with extensive backgrounds in the research, teaching, and development of instructional software. The project is being supported by the National Science Foundation (PHY-9014548), and it has received other support from the IBM Corp., Apple Computer Corp., and George Mason University. The Simulations being developed are: Astrophysics, Classical Mechanics, Electricity & Magnetism, Modern Physics, Nuclear and Particle Physics, Quantum Mechanics, Solid State, Thermal and Statistical, and Waves and Optics.
Download or read book Quantum Simulators written by T. Calarco and published by IOS Press. This book was released on 2018-05-02 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: The last century has been characterized by the development of information theory and the consequent transformative impact of new technologies on societies around the world. It seems likely that the tremendous progress in nanoscience – the ability to manipulate microscopic systems at the level of a single atom – and the emergence of quantum information science, will be the key components of the next revolution; that of the new quantum technologies. Indeed, the ability to manipulate and control quantum systems has already found a variety of potential applications, ranging from the development of molecular nanoscale machines which exploit quantum coherence for their functioning, to metrological schemes where quantum effects are used to enhance the accuracy of measurement and detection systems to achieve higher statistical precision than is possible using purely classical approaches. This book presents the proceedings of the Enrico Fermi Summer School on Quantum Simulators (Course 198) held in Varenna, Italy, 22-27 July 2016. Topics covered included: cold atoms in optical lattices; trapped ions; solid state implementations; quantum many-body physics; quantum photonics; hybrid quantum systems; and transport phenomena. The book will be of interest to all those whose work is connected to the rapidly growing field of quantum technologies.
Book Synopsis From Atom Optics to Quantum Simulation by : Sebastian Will
Download or read book From Atom Optics to Quantum Simulation written by Sebastian Will and published by Springer Science & Business Media. This book was released on 2012-12-15 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis explores ultracold quantum gases of bosonic and fermionic atoms in optical lattices. The highly controllable experimental setting discussed in this work, has opened the door to new insights into static and dynamical properties of ultracold quantum matter. One of the highlights reported here is the development and application of a novel time-resolved spectroscopy technique for quantum many-body systems. By following the dynamical evolution of a many-body system after a quantum quench, the author shows how the important energy scales of the underlying Hamiltonian can be measured with high precision. This achievement, its application, and many other exciting results make this thesis of interest to a broad audience ranging from quantum optics to condensed matter physics. A lucid style of writing accompanied by a series of excellent figures make the work accessible to readers outside the rapidly growing research field of ultracold atoms.
Book Synopsis Programming Quantum Computers by : Eric R. Johnston
Download or read book Programming Quantum Computers written by Eric R. Johnston and published by O'Reilly Media. This book was released on 2019-07-03 with total page 333 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum computers are poised to kick-start a new computing revolution—and you can join in right away. If you’re in software engineering, computer graphics, data science, or just an intrigued computerphile, this book provides a hands-on programmer’s guide to understanding quantum computing. Rather than labor through math and theory, you’ll work directly with examples that demonstrate this technology’s unique capabilities. Quantum computing specialists Eric Johnston, Nic Harrigan, and Mercedes Gimeno-Segovia show you how to build the skills, tools, and intuition required to write quantum programs at the center of applications. You’ll understand what quantum computers can do and learn how to identify the types of problems they can solve. This book includes three multichapter sections: Programming for a QPU—Explore core concepts for programming quantum processing units, including how to describe and manipulate qubits and how to perform quantum teleportation. QPU Primitives—Learn algorithmic primitives and techniques, including amplitude amplification, the Quantum Fourier Transform, and phase estimation. QPU Applications—Investigate how QPU primitives are used to build existing applications, including quantum search techniques and Shor’s factoring algorithm.
Book Synopsis Quantum Game Simulation by : Ramon Alonso-Sanz
Download or read book Quantum Game Simulation written by Ramon Alonso-Sanz and published by Springer. This book was released on 2020-08-14 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses two disciplines that have traditionally occupied completely different realms: quantum information and computation, and game theory. Helping readers connect these fields, it appeals to a wide audience, including computer scientists, engineers, mathematicians, physicists, biologists or economists. The book is richly illustrated and basic concepts are accessible to readers with basic training in science. As such it is useful for undergraduate students as well as established academicians and researchers. Further, the didactic and tutorial-like style makes it ideal supplementary reading for courses on quantum information and computation, game theory, cellular automata and simulation.
Book Synopsis NMR Quantum Information Processing by : Ivan Oliveira
Download or read book NMR Quantum Information Processing written by Ivan Oliveira and published by Elsevier. This book was released on 2011-04-18 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum Computation and Quantum Information (QIP) deals with the identification and use of quantum resources for information processing. This includes three main branches of investigation: quantum algorithm design, quantum simulation andquantum communication, including quantum cryptography. Along the past few years, QIP has become one of the most active area ofresearch in both, theoretical and experimental physics, attracting students and researchers fascinated, not only by the potentialpractical applications of quantum computers, but also by the possibility of studying fundamental physics at the deepest level of quantum phenomena.NMR Quantum Computation and Quantum Information Processing describes the fundamentals of NMR QIP, and the main developments which can lead to a large-scale quantum processor. The text starts with a general chapter onthe interesting topic of the physics of computation. The very first ideas which sparkled the development of QIP came from basic considerations of the physical processes underlying computational actions. In Chapter 2 it is made an introduction to NMR, including the hardware and other experimental aspects of the technique. InChapter 3 we revise the fundamentals of Quantum Computation and Quantum Information. The chapter is very much based on the extraordinary book of Michael A. Nielsen and Isaac L. Chuang, withan upgrade containing some of the latest developments, such as QIP in phase space, and telecloning. Chapter 4 describes how NMRgenerates quantum logic gates from radiofrequency pulses, upon which quantum protocols are built. It also describes the important technique of Quantum State Tomography for both, quadrupole and spin1/2 nuclei. Chapter 5 describes some of the main experiments of quantum algorithm implementation by NMR, quantum simulation and QIP in phase space. The important issue of entanglement in NMR QIPexperiments is discussed in Chapter 6. This has been a particularly exciting topic in the literature. The chapter contains a discussionon the theoretical aspects of NMR entanglement, as well as some of the main experiments where this phenomenon is reported. Finally, Chapter 7 is an attempt to address the future of NMR QIP, based invery recent developments in nanofabrication and single-spin detection experiments. Each chapter is followed by a number of problems and solutions.* Presents a large number of problems with solutions, ideal for students* Brings together topics in different areas: NMR, nanotechnology, quantum computation * Extensive references
Book Synopsis The Simulated Multiverse by : Rizwan Virk
Download or read book The Simulated Multiverse written by Rizwan Virk and published by Bayview Books, LLC. This book was released on 2021-10-15 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: Do multiple versions of ourselves exist in parallel universes living out their lives in different timelines? In this follow up to his bestseller, The Simulation Hypothesis, MIT Computer Scientist and Silicon Valley Game Pioneer Rizwan Virk explores these topics from a new lens: that of simulation theory. If we are living in a digital universe, then many of the complexities and baffling characteristics of our reality start to make more sense. Quantum computing lets us simulate complex phenomena in parallel, allowing the simulation to explore many realities at once to find the most "optimum" path forward. Could this explain not only the enigmatic Mandela Effect but provide us with a new understanding of time and space? Bringing his unique trademark style of combining video games, computer science, quantum physics and computing with lots of philosophy and science fiction, Virk gives us a new way to think about not just our universe, but all possible realities!
Book Synopsis Ultracold Atoms in Optical Lattices by : Maciej Lewenstein
Download or read book Ultracold Atoms in Optical Lattices written by Maciej Lewenstein and published by Oxford University Press. This book was released on 2012-03-08 with total page 494 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores the physics of atoms frozen to ultralow temperatures and trapped in periodic light structures. It introduces the reader to the spectacular progress achieved on the field of ultracold gases and describes present and future challenges in condensed matter physics, high energy physics, and quantum computation.
Book Synopsis Molecular Dynamics by : Perla Balbuena
Download or read book Molecular Dynamics written by Perla Balbuena and published by Elsevier. This book was released on 1999-04-22 with total page 971 pages. Available in PDF, EPUB and Kindle. Book excerpt: The latest developments in quantum and classical molecular dynamics, related techniques, and their applications to several fields of science and engineering. Molecular simulations include a broad range of methodologies such as Monte Carlo, Brownian dynamics, lattice dynamics, and molecular dynamics (MD).Features of this book:• Presents advances in methodologies, introduces quantum methods and lists new techniques for classical MD• Deals with complex systems: biomolecules, aqueous solutions, ice and clathrates, liquid crystals, polymers• Provides chemical reactions, interfaces, catalysis, surface phenomena and solidsAlthough the book is not formally divided into methods and applications, the chapters are arranged starting with those that discuss new algorithms, methods and techniques, followed by several important applications.
Book Synopsis Computational Electronics by : Dragica Vasileska
Download or read book Computational Electronics written by Dragica Vasileska and published by CRC Press. This book was released on 2017-12-19 with total page 782 pages. Available in PDF, EPUB and Kindle. Book excerpt: Starting with the simplest semiclassical approaches and ending with the description of complex fully quantum-mechanical methods for quantum transport analysis of state-of-the-art devices, Computational Electronics: Semiclassical and Quantum Device Modeling and Simulation provides a comprehensive overview of the essential techniques and methods for effectively analyzing transport in semiconductor devices. With the transistor reaching its limits and new device designs and paradigms of operation being explored, this timely resource delivers the simulation methods needed to properly model state-of-the-art nanoscale devices. The first part examines semiclassical transport methods, including drift-diffusion, hydrodynamic, and Monte Carlo methods for solving the Boltzmann transport equation. Details regarding numerical implementation and sample codes are provided as templates for sophisticated simulation software. The second part introduces the density gradient method, quantum hydrodynamics, and the concept of effective potentials used to account for quantum-mechanical space quantization effects in particle-based simulators. Highlighting the need for quantum transport approaches, it describes various quantum effects that appear in current and future devices being mass-produced or fabricated as a proof of concept. In this context, it introduces the concept of effective potential used to approximately include quantum-mechanical space-quantization effects within the semiclassical particle-based device simulation scheme. Addressing the practical aspects of computational electronics, this authoritative resource concludes by addressing some of the open questions related to quantum transport not covered in most books. Complete with self-study problems and numerous examples throughout, this book supplies readers with the practical understanding required to create their own simulators.