Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Point Defect Energies
Download Point Defect Energies full books in PDF, epub, and Kindle. Read online Point Defect Energies ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author :Johann-Martin Spaeth Publisher :Springer Science & Business Media ISBN 13 :9783540426950 Total Pages :508 pages Book Rating :4.4/5 (269 download)
Book Synopsis Point Defects in Semiconductors and Insulators by : Johann-Martin Spaeth
Download or read book Point Defects in Semiconductors and Insulators written by Johann-Martin Spaeth and published by Springer Science & Business Media. This book was released on 2003-01-22 with total page 508 pages. Available in PDF, EPUB and Kindle. Book excerpt: The precedent book with the title "Structural Analysis of Point Defects in Solids: An introduction to multiple magnetic resonance spectroscopy" ap peared about 10 years ago. Since then a very active development has oc curred both with respect to the experimental methods and the theoretical interpretation of the experimental results. It would therefore not have been sufficient to simply publish a second edition of the precedent book with cor rections and a few additions. Furthermore the application of the multiple magnetic resonance methods has more and more shifted towards materials science and represents one of the important methods of materials analysis. Multiple magnetic resonances are used less now for "fundamental" studies in solid state physics. Therefore a more "pedestrian" access to the meth ods is called for to help the materials scientist to use them or to appreciate results obtained by using these methods. We have kept the two introduc tory chapters on conventional electron paramagnetic resonance (EPR) of the precedent book which are the base for the multiple resonance methods. The chapter on optical detection of EPR (ODEPR) was supplemented by sections on the structural information one can get from "forbidden" transitions as well as on spatial correlations between defects in the so-called "cross relaxation spectroscopy". High-field ODEPR/ENDOR was also added. The chapter on stationary electron nuclear double resonance (ENDOR) was supplemented by the method of stochastic END OR developed a few years ago in Paderborn which is now also commercially available.
Book Synopsis Handbook of Materials Structures, Properties, Processing and Performance by : Lawrence E. Murr
Download or read book Handbook of Materials Structures, Properties, Processing and Performance written by Lawrence E. Murr and published by Springer. This book was released on 2021-01-14 with total page 1500 pages. Available in PDF, EPUB and Kindle. Book excerpt: This extensive knowledge base provides a coherent description of advanced topics in materials science and engineering with an interdisciplinary/multidisciplinary approach. The book incorporates a historical account of critical developments and the evolution of materials fundamentals, providing an important perspective for materials innovations, including advances in processing, selection, characterization, and service life prediction. It includes the perspectives of materials chemistry, materials physics, engineering design, and biological materials as these relate to crystals, crystal defects, and natural and biological materials hierarchies, from the atomic and molecular to the macroscopic, and emphasizing natural and man-made composites. This expansive presentation of topics explores interrelationships among properties, processing, and synthesis (historic and contemporary). The book serves as both an authoritative reference and roadmap of advanced materials concepts for practitioners, graduate-level students, and faculty coming from a range of disciplines.
Book Synopsis Advanced Calculations for Defects in Materials by : Audrius Alkauskas
Download or read book Advanced Calculations for Defects in Materials written by Audrius Alkauskas and published by John Wiley & Sons. This book was released on 2011-05-16 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book investigates the possible ways of improvement by applying more sophisticated electronic structure methods as well as corrections and alternatives to the supercell model. In particular, the merits of hybrid and screened functionals, as well as of the +U methods are assessed in comparison to various perturbative and Quantum Monte Carlo many body theories. The inclusion of excitonic effects is also discussed by way of solving the Bethe-Salpeter equation or by using time-dependent DFT, based on GW or hybrid functional calculations. Particular attention is paid to overcome the side effects connected to finite size modeling. The editors are well known authorities in this field, and very knowledgeable of past developments as well as current advances. In turn, they have selected respected scientists as chapter authors to provide an expert view of the latest advances. The result is a clear overview of the connections and boundaries between these methods, as well as the broad criteria determining the choice between them for a given problem. Readers will find various correction schemes for the supercell model, a description of alternatives by applying embedding techniques, as well as algorithmic improvements allowing the treatment of an ever larger number of atoms at a high level of sophistication.
Book Synopsis Point Defects in Semiconductors I by : M. Lannoo
Download or read book Point Defects in Semiconductors I written by M. Lannoo and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 283 pages. Available in PDF, EPUB and Kindle. Book excerpt: From its early beginning before the war, the field of semiconductors has developped as a classical example where the standard approximations of 'band theory' can be safely used to study its interesting electronic properties. Thus in these covalent crystals, the electronic structure is only weakly coupled with the atomic vibrations; one-electron Bloch functions can be used and their energy bands can be accurately computed in the neighborhood of the energy gap between the valence and conduction bands; nand p doping can be obtained by introducing substitutional impurities which only introduce shallow donors and acceptors and can be studied by an effective-mass weak-scattering description. Yet, even at the beginning, it was known from luminescence studies that these simple concepts failed to describe the various 'deep levels' introduced near the middle of the energy gap by strong localized imperfections. These imperfections not only include some interstitial and many substitutional atoms, but also 'broken bonds' associated with surfaces and interfaces, dis location cores and 'vacancies', i.e., vacant iattice sites in the crystal. In all these cases, the electronic structure can be strongly correlated with the details of the atomic structure and the atomic motion. Because these 'deep levels' are strongly localised, electron-electron correlations can also playa significant role, and any weak perturbation treatment from the perfect crystal structure obviously fails. Thus, approximate 'strong coupling' techniques must often be used, in line' with a more chemical de scription of bonding.
Book Synopsis Color Centers in Semiconductors for Quantum Applications by : Joel Davidsson
Download or read book Color Centers in Semiconductors for Quantum Applications written by Joel Davidsson and published by Linköping University Electronic Press. This book was released on 2021-02-08 with total page 72 pages. Available in PDF, EPUB and Kindle. Book excerpt: Point defects in semiconductors have been and will continue to be relevant for applications. Shallow defects realize transistors, which power the modern age of information, and in the not-too-distant future, deep-level defects could provide the foundation for a revolution in quantum information processing. Deep-level defects (in particular color centers) are also of interest for other applications such as a single photon emitter, especially one that emits at 1550 nm, which is the optimal frequency for long-range communication via fiber optics. First-principle calculations can predict the energies and optical properties of point defects. I performed extensive convergence tests for magneto-optical properties, such as zero phonon lines, hyperfine coupling parameters, and zero-field splitting for the four different configurations of the divacancy in 4H-SiC. Comparing the converged results with experimental measurements, a clear identification of the different configurations was made. With this approach, I also identified all configurations for the silicon vacancy in 4H-SiC as well as the divacancy and silicon vacancy in 6H-SiC. The same method was further used to identify two additional configurations belonging to the divacancy present in a 3C stacking fault inclusion in 4H-SiC. I extended the calculated properties to include the transition dipole moment which provides the polarization, intensity, and lifetime of the zero phonon lines. When calculating the transition dipole moment, I show that it is crucial to include the self-consistent change of the electronic orbitals in the excited state due to the geometry relaxation. I tested the method on the divacancy in 4H-SiC, further strengthening the previous identification and providing accurate photoluminescence intensities and lifetimes. Finding stable point defects with the right properties for a given application is a challenging task. Due to the vast number of possible point defects present in bulk semiconductor materials, I designed and implemented a collection of automatic workflows to systematically investigate any point defects. This collection is called ADAQ (Automatic Defect Analysis and Qualification) and automates every step of the theoretical process, from creating defects to predicting their properties. Using ADAQ, I screened about 8000 intrinsic point defect clusters in 4H-SiC. This thesis presents an overview of the formation energy and the most relevant optical properties for these single and double point defects. These results show great promise for finding new color centers suitable for various quantum applications.
Book Synopsis Comprehensive Nuclear Materials by : Todd R Allen
Download or read book Comprehensive Nuclear Materials written by Todd R Allen and published by Elsevier. This book was released on 2011-05-12 with total page 3552 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensive Nuclear Materials, Five Volume Set discusses the major classes of materials suitable for usage in nuclear fission, fusion reactors and high power accelerators, and for diverse functions in fuels, cladding, moderator and control materials, structural, functional, and waste materials. The work addresses the full panorama of contemporary international research in nuclear materials, from Actinides to Zirconium alloys, from the worlds' leading scientists and engineers. Critically reviews the major classes and functions of materials, supporting the selection, assessment, validation and engineering of materials in extreme nuclear environment Fully integrated with F-elements.net, a proprietary database containing useful cross-referenced property data on the lanthanides and actinides Details contemporary developments in numerical simulation, modelling, experimentation, and computational analysis, for effective implementation in labs and plants
Download or read book Mustard Lung written by Mostafa Ghanei and published by Academic Press. This book was released on 2016-05-03 with total page 164 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mustard Lung: Diagnosis and Treatment of Respiratory Disorders in Sulfur-Mustard Injured Patients brings together the details regarding pathophysiology, medication, and protective issues to provide a comprehensive look at health problems associated with sulfur mustard injury. It provides a bench-to-bedside look at the long term complications of vesicant exposure in humans as well as how mustard gas exposure affects lung function. By providing guidelines and approaches for the diagnosis, pathogenesis, and treatment of SM injury cases, this book is helpful for a wide range of medical researchers and clinicians. For decades, chemical respiratory disorders were diagnosed and managed traditionally similar to other chronic respiratory diseases. However, the exact nature of chemical respiratory disorders is different and needs to be treated as such. - Includes the most up-to-date basic and clinical research findings on sulfur mustard from top researchers - Provides information on chemical agents, complications that arise due to sulfur mustard exposure, and drugs available to treat injuries - Contains an appendix with practical prescription recommendations for patients affected by mustard lung - Provides a bench-to-bedside look at the long term complications of vesicant exposure in humans as well as how mustard gas exposure affects lung function
Download or read book Defects in Semiconductors written by and published by Academic Press. This book was released on 2015-06-08 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume, number 91 in the Semiconductor and Semimetals series, focuses on defects in semiconductors. Defects in semiconductors help to explain several phenomena, from diffusion to getter, and to draw theories on materials' behavior in response to electrical or mechanical fields. The volume includes chapters focusing specifically on electron and proton irradiation of silicon, point defects in zinc oxide and gallium nitride, ion implantation defects and shallow junctions in silicon and germanium, and much more. It will help support students and scientists in their experimental and theoretical paths. - Expert contributors - Reviews of the most important recent literature - Clear illustrations - A broad view, including examination of defects in different semiconductors
Book Synopsis Defects in Solids by : Richard J. D. Tilley
Download or read book Defects in Solids written by Richard J. D. Tilley and published by John Wiley & Sons. This book was released on 2008-10-10 with total page 549 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides a thorough understanding of the chemistry and physics of defects, enabling the reader to manipulate them in the engineering of materials. Reinforces theoretical concepts by placing emphasis on real world processes and applications. Includes two kinds of end-of-chapter problems: multiple choice (to test knowledge of terms and principles) and more extensive exercises and calculations (to build skills and understanding). Supplementary material on crystallography and band structure are included in separate appendices.
Book Synopsis Germanium-Based Technologies by : Cor Claeys
Download or read book Germanium-Based Technologies written by Cor Claeys and published by Elsevier. This book was released on 2011-07-28 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: Germanium is a semiconductor material that formed the basis for the development of transistor technology. Although the breakthrough of planar technology and integrated circuits put silicon in the foreground, in recent years there has been a renewed interest in germanium, which has been triggered by its strong potential for deep submicron (sub 45 nm) technologies. Germanium-Based technologies: From Materials to Devices is the first book to provide a broad, in-depth coverage of the field, including recent advances in Ge-technology and the fundamentals in material science, device physics and semiconductor processing. The contributing authors are international experts with a world-wide recognition and involved in the leading research in the field. The book also covers applications and the use of Ge for optoelectronics, detectors and solar cells. An ideal reference work for students and scientists working in the field of physics of semiconductor devices and materials, as well as for engineers in research centres and industry. Both the newcomer and the expert should benefit from this unique book. - State-of-the-art information available for the first time as an all-in-source - Extensive reference list making it an indispensable reference book - Broad coverage from fundamental aspects up to industrial applications
Book Synopsis Application of Particle and Laser Beams in Materials Technology by : P. Misaelides
Download or read book Application of Particle and Laser Beams in Materials Technology written by P. Misaelides and published by Springer Science & Business Media. This book was released on 1995-01-31 with total page 702 pages. Available in PDF, EPUB and Kindle. Book excerpt: The development of advanced materials with preselected properties is one of the main goals of materials research. Of especial interest are electronics, high-temperature and superhard materials for various applications, as well as alloys with improved wear, corrosion and mechanical resistance properties. The technical challenge connected with the production of these materials is not only associated with the development of new specialised preparation techniques but also with quality control. The energetic charged particle, electron and photon beams offer the possibility of modifying the properties of the near-surface regions of materials without seriously affecting their bulk, and provide unique analytical tools for testing their quality. Application of Particle and Laser Beams in Materials Technology provides an overview of this rapidly expanding field. Fundamental aspects concerning the interactions and collisions on atomic, nuclear and solid state scale are presented in a didactic way, along with the application of a variety of techniques for the solution of problems ranging from the development of electronics materials to corrosion research and from archaeometry to environmental protection. The book is divided into six thematic units: Fundamentals, Surface Analysis Techniques, Laser Beams in Materials Technology, Accelerator-Based Techniques in Materials Technology, Materials Modification and Synchrotron Radiation.
Book Synopsis The Chemistry of Imperfect Crystals by : Ferdinand Anne Kröger
Download or read book The Chemistry of Imperfect Crystals written by Ferdinand Anne Kröger and published by . This book was released on 1964 with total page 1136 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Modern Physical Metallurgy by : R. E. Smallman
Download or read book Modern Physical Metallurgy written by R. E. Smallman and published by Elsevier. This book was released on 2013-10-22 with total page 545 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern Physical Metallurgy, Fourth Edition explains the fundamental principles of physical metallurgy and their application, allowing its readers to understand the many important technological phenomena of the field. The book covers topics such as the molecular properties of metals; the different physical methods of metals and alloys; and the structure of alloys. Also covered are topics such as the deformation of metals and alloys; phase transformations; and related processes such as creep, fatigue, fracture, oxidation, and corrosion. The text is recommended for metallurgists, chemists, and engineers who would like to know more about the principles behind metallurgy and its application in different fields.
Book Synopsis Modern Physical Metallurgy and Materials Engineering by : R. E. Smallman
Download or read book Modern Physical Metallurgy and Materials Engineering written by R. E. Smallman and published by Elsevier. This book was released on 1999-11-22 with total page 449 pages. Available in PDF, EPUB and Kindle. Book excerpt: For many years, various editions of Smallman's Modern Physical Metallurgy have served throughout the world as a standard undergraduate textbook on metals and alloys. In 1995, it was rewritten and enlarged to encompass the related subject of materials science and engineering and appeared under the title Metals & Materials: Science, Processes, Applications offering a comprehensive amount of a much wider range of engineering materials. Coverage ranged from pure elements to superalloys, from glasses to engineering ceramics, and from everyday plastics to in situ composites, Amongst other favourable reviews, Professor Bhadeshia of Cambridge University commented: "Given the amount of work that has obviously gone into this book and its extensive comments, it is very attractively priced. It is an excellent book to be recommend strongly for purchase by undergraduates in materials-related subjects, who should benefit greatly by owning a text containing so much knowledge."The book now includes new chapters on materials for sports equipment (golf, tennis, bicycles, skiing, etc.) and biomaterials (replacement joints, heart valves, tissue repair, etc.) - two of the most exciting and rewarding areas in current materials research and development. As in its predecessor, numerous examples are given of the ways in which knowledge of the relation between fine structure and properties has made it possible to optimise the service behaviour of traditional engineering materials and to develop completely new and exciting classes of materials. Special consideration is given to the crucial processing stage that enables materials to be produced as marketable commodities. Whilst attempting to produce a useful and relatively concise survey of key materials and their interrelationships, the authors have tried to make the subject accessible to a wide range of readers, to provide insights into specialised methods of examination and to convey the excitement of the atmosphere in which new materials are conceived and developed.
Book Synopsis Defects in Advanced Electronic Materials and Novel Low Dimensional Structures by : Jan Stehr
Download or read book Defects in Advanced Electronic Materials and Novel Low Dimensional Structures written by Jan Stehr and published by Woodhead Publishing. This book was released on 2018-06-29 with total page 309 pages. Available in PDF, EPUB and Kindle. Book excerpt: Defects in Advanced Electronic Materials and Novel Low Dimensional Structures provides a comprehensive review on the recent progress in solving defect issues and deliberate defect engineering in novel material systems. It begins with an overview of point defects in ZnO and group-III nitrides, including irradiation-induced defects, and then look at defects in one and two-dimensional materials, including carbon nanotubes and graphene. Next, it examines the ways that defects can expand the potential applications of semiconductors, such as energy upconversion and quantum processing. The book concludes with a look at the latest advances in theory. While defect physics is extensively reviewed for conventional bulk semiconductors, the same is far from being true for novel material systems, such as low-dimensional 1D and 0D nanostructures and 2D monolayers. This book fills that necessary gap. - Presents an in-depth overview of both conventional bulk semiconductors and low-dimensional, novel material systems, such as 1D structures and 2D monolayers - Addresses a range of defects in a variety of systems, providing a comparative approach - Includes sections on advances in theory that provide insights on where this body of research might lead
Book Synopsis Theory of Defects in Solids by : A. M. Stoneham
Download or read book Theory of Defects in Solids written by A. M. Stoneham and published by Oxford University Press. This book was released on 2001 with total page 982 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book surveys the theory of defects in solids, concentrating on the electronic structure of point defects in insulators and semiconductors. The relations between different approaches are described, and the predictions of the theory compared critically with experiment. The physical assumptions and approximations are emphasized. The book begins with the perfect solid, then reviews the main methods of calculating defect energy levels and wave functions. The calculation and observable defect properties is discussed, and finally, the theory is applied to a range of defects that are very different in nature. This book is intended for research workers and graduate students interested in solid-state physics. From reviews of the hardback: 'It is unique and of great value to all interested in the basic aspects of defects in solids.' Physics Today 'This is a particularly worthy book, one which has long been needed by the theoretician and experimentalist alike.' Nature
Book Synopsis Defects in Two-Dimensional Materials by : Rafik Addou
Download or read book Defects in Two-Dimensional Materials written by Rafik Addou and published by Elsevier. This book was released on 2022-02-14 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: Defects in Two-Dimensional Materials addresses the fundamental physics and chemistry of defects in 2D materials and their effects on physical, electrical and optical properties. The book explores 2D materials such as graphene, hexagonal boron nitride (h-BN) and transition metal dichalcogenides (TMD). This knowledge will enable scientists and engineers to tune 2D materials properties to meet specific application requirements. The book reviews the techniques to characterize 2D material defects and compares the defects present in the various 2D materials (e.g. graphene, h-BN, TMDs, phosphorene, silicene, etc.). As two-dimensional materials research and development is a fast-growing field that could lead to many industrial applications, the primary objective of this book is to review, discuss and present opportunities in controlling defects in these materials to improve device performance in general or use the defects in a controlled way for novel applications. Presents the theory, physics and chemistry of 2D materials Catalogues defects of 2D materials and their impacts on materials properties and performance Reviews methods to characterize, control and engineer defects in 2D materials