Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Physical Realizations Of Quantum Computing
Download Physical Realizations Of Quantum Computing full books in PDF, epub, and Kindle. Read online Physical Realizations Of Quantum Computing ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Quantum Computing by : Mikio Nakahara
Download or read book Quantum Computing written by Mikio Nakahara and published by CRC Press. This book was released on 2008-03-11 with total page 439 pages. Available in PDF, EPUB and Kindle. Book excerpt: Covering both theory and progressive experiments, Quantum Computing: From Linear Algebra to Physical Realizations explains how and why superposition and entanglement provide the enormous computational power in quantum computing. This self-contained, classroom-tested book is divided into two sections, with the first devoted to the theoretical aspect
Book Synopsis Physical Realizations of Quantum Computing by : Mikio Nakahara
Download or read book Physical Realizations of Quantum Computing written by Mikio Nakahara and published by World Scientific. This book was released on 2006 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: The contributors of this volume are working at the forefront of various realizations of quantum computers. They survey the recent developments in each realization, in the context of the DiVincenzo criteria, including nuclear magnetic resonance, Josephson junctions, quantum dots, and trapped ions. There are also some theoretical contributions which have relevance in the physical realizations of a quantum computer. This book fills the gap between elementary introductions to the subject and highly specialized research papers to allow beginning graduate students to understand the cutting-edge of research in the shortest possible time. Sample Chapter(s). Chapter 1: DiVincenzo Criteria and Beyond (537 KB). Contents: DiVincenzo Criteria and Beyond (M M Salomaa & M Nakahara); Single-Electron Charge and Spin Qubit in Semiconductor Quantum Dots (T Fujisawa); Superconducting Quantum Computing: Status and Prospects (F K Wilhelm & K Semba); Controlling Three Atomic Qubits (H Hnffer et al.); Liquid-State NMR Quantum Computer: Hamiltonian Formalism and Experiments (Y Kondo et al.); Optical Quantum Computation (K Nemoto & W J Munro). Readership: Graduates students and researchers in physics."
Book Synopsis Physical Realizations Of Quantum Computing: Are The Divincenzo Criteria Fulfilled In 2004? (With Cd-rom) by : Mikio Nakahara
Download or read book Physical Realizations Of Quantum Computing: Are The Divincenzo Criteria Fulfilled In 2004? (With Cd-rom) written by Mikio Nakahara and published by World Scientific. This book was released on 2006-03-09 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: The contributors of this volume are working at the forefront of various realizations of quantum computers. They survey the recent developments in each realization, in the context of the DiVincenzo criteria, including nuclear magnetic resonance, Josephson junctions, quantum dots, and trapped ions. There are also some theoretical contributions which have relevance in the physical realizations of a quantum computer. This book fills the gap between elementary introductions to the subject and highly specialized research papers to allow beginning graduate students to understand the cutting-edge of research in the shortest possible time.
Author :National Academies of Sciences, Engineering, and Medicine Publisher :National Academies Press ISBN 13 :030947969X Total Pages :273 pages Book Rating :4.3/5 (94 download)
Book Synopsis Quantum Computing by : National Academies of Sciences, Engineering, and Medicine
Download or read book Quantum Computing written by National Academies of Sciences, Engineering, and Medicine and published by National Academies Press. This book was released on 2019-04-27 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum mechanics, the subfield of physics that describes the behavior of very small (quantum) particles, provides the basis for a new paradigm of computing. First proposed in the 1980s as a way to improve computational modeling of quantum systems, the field of quantum computing has recently garnered significant attention due to progress in building small-scale devices. However, significant technical advances will be required before a large-scale, practical quantum computer can be achieved. Quantum Computing: Progress and Prospects provides an introduction to the field, including the unique characteristics and constraints of the technology, and assesses the feasibility and implications of creating a functional quantum computer capable of addressing real-world problems. This report considers hardware and software requirements, quantum algorithms, drivers of advances in quantum computing and quantum devices, benchmarks associated with relevant use cases, the time and resources required, and how to assess the probability of success.
Book Synopsis Quantum Information Processing and Quantum Error Correction by : Ivan Djordjevic
Download or read book Quantum Information Processing and Quantum Error Correction written by Ivan Djordjevic and published by Academic Press. This book was released on 2012-04-16 with total page 597 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum Information Processing and Quantum Error Correction is a self-contained, tutorial-based introduction to quantum information, quantum computation, and quantum error-correction. Assuming no knowledge of quantum mechanics and written at an intuitive level suitable for the engineer, the book gives all the essential principles needed to design and implement quantum electronic and photonic circuits. Numerous examples from a wide area of application are given to show how the principles can be implemented in practice. This book is ideal for the electronics, photonics and computer engineer who requires an easy- to-understand foundation on the principles of quantum information processing and quantum error correction, together with insight into how to develop quantum electronic and photonic circuits. Readers of this book will be ready for further study in this area, and will be prepared to perform independent research. The reader completed the book will be able design the information processing circuits, stabilizer codes, Calderbank-Shor-Steane (CSS) codes, subsystem codes, topological codes and entanglement-assisted quantum error correction codes; and propose corresponding physical implementation. The reader completed the book will be proficient in quantum fault-tolerant design as well. Unique Features Unique in covering both quantum information processing and quantum error correction - everything in one book that an engineer needs to understand and implement quantum-level circuits. Gives an intuitive understanding by not assuming knowledge of quantum mechanics, thereby avoiding heavy mathematics. In-depth coverage of the design and implementation of quantum information processing and quantum error correction circuits. Provides the right balance among the quantum mechanics, quantum error correction, quantum computing and quantum communication. Dr. Djordjevic is an Assistant Professor in the Department of Electrical and Computer Engineering of College of Engineering, University of Arizona, with a joint appointment in the College of Optical Sciences. Prior to this appointment in August 2006, he was with University of Arizona, Tucson, USA (as a Research Assistant Professor); University of the West of England, Bristol, UK; University of Bristol, Bristol, UK; Tyco Telecommunications, Eatontown, USA; and National Technical University of Athens, Athens, Greece. His current research interests include optical networks, error control coding, constrained coding, coded modulation, turbo equalization, OFDM applications, and quantum error correction. He presently directs the Optical Communications Systems Laboratory (OCSL) within the ECE Department at the University of Arizona. Provides everything an engineer needs in one tutorial-based introduction to understand and implement quantum-level circuits Avoids the heavy use of mathematics by not assuming the previous knowledge of quantum mechanics Provides in-depth coverage of the design and implementation of quantum information processing and quantum error correction circuits
Book Synopsis Quantum Computation and Quantum Information by : Michael A. Nielsen
Download or read book Quantum Computation and Quantum Information written by Michael A. Nielsen and published by Cambridge University Press. This book was released on 2010-12-09 with total page 709 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the most cited books in physics of all time, Quantum Computation and Quantum Information remains the best textbook in this exciting field of science. This 10th anniversary edition includes an introduction from the authors setting the work in context. This comprehensive textbook describes such remarkable effects as fast quantum algorithms, quantum teleportation, quantum cryptography and quantum error-correction. Quantum mechanics and computer science are introduced before moving on to describe what a quantum computer is, how it can be used to solve problems faster than 'classical' computers and its real-world implementation. It concludes with an in-depth treatment of quantum information. Containing a wealth of figures and exercises, this well-known textbook is ideal for courses on the subject, and will interest beginning graduate students and researchers in physics, computer science, mathematics, and electrical engineering.
Book Synopsis Physical Realizations of Quantum Computing by : Mikio Nakahara
Download or read book Physical Realizations of Quantum Computing written by Mikio Nakahara and published by World Scientific. This book was released on 2006 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: Examines the potential of various physical realizations of a quantum computer in view of the DiVincenzo criteria. In an influential article, DiVincenzo, the keynote speaker of the symposium, proposed 5 criteria that any physical system must satisfy to be a viable quantum computer.
Book Synopsis Introduction to Quantum Computers by : Gennady P. Berman
Download or read book Introduction to Quantum Computers written by Gennady P. Berman and published by World Scientific. This book was released on 1998 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum computing promises to solve problems which are intractable on digital computers. Highly parallel quantum algorithms can decrease the computational time for some problems by many orders of magnitude. This important book explains how quantum computers can do these amazing things. Several algorithms are illustrated: the discrete Fourier transform, Shor's algorithm for prime factorization; algorithms for quantum logic gates; physical implementations of quantum logic gates in ion traps and in spin chains; the simplest schemes for quantum error correction; correction of errors caused by imperfect resonant pulses; correction of errors caused by the nonresonant actions of a pulse; and numerical simulations of dynamical behavior of the quantum Control-Not gate. An overview of some basic elements of computer science is presented, including the Turing machine, Boolean algebra, and logic gates. The required quantum ideas are explained.
Book Synopsis Quantum Information and Quantum Computing by : Mikio Nakahara
Download or read book Quantum Information and Quantum Computing written by Mikio Nakahara and published by World Scientific. This book was released on 2013 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: The open research center project "Interdisciplinary fundamental research toward realization of a quantum computer" has been supported by the Ministry of Education, Japan for five years. This is a collection of the research outcomes by the members engaged in the project. To make the presentation self-contained, it starts with an overview by Mikio Nakahara, which serves as a concise introduction to quantum information and quantum computing. Subsequent contributions include subjects from physics, chemistry, mathematics, and information science, reflecting upon the wide variety of scientists working under this project. These contributions introduce NMR quantum computing and related techniques, number theory and coding theory, quantum error correction, photosynthesis, non-classical correlations and entanglement, neutral atom quantum computer, among others. Each of the contributions will serve as a short introduction to these cutting edge research fields.
Book Synopsis Will We Ever Have a Quantum Computer? by : Mikhail I. Dyakonov
Download or read book Will We Ever Have a Quantum Computer? written by Mikhail I. Dyakonov and published by Springer Nature. This book was released on 2020-03-23 with total page 54 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses a broad community of physicists, engineers, computer scientists and industry professionals, as well as the general public, who are aware of the unprecedented media hype surrounding the supposedly imminent new era of quantum computing. The central argument of this book is that the feasibility of quantum computing in the physical world is extremely doubtful. The hypothetical quantum computer is not simply a quantum variant of the conventional digital computer, but rather a quantum extension of a classical analog computer operating with continuous parameters. In order to have a useful machine, the number of continuous parameters to control would have to be of such an astronomically large magnitude as to render the endeavor virtually infeasible. This viewpoint is based on the author’s expert understanding of the gargantuan challenges that would have to be overcome to ever make quantum computing a reality. Knowledge of secondary-school-level physics and math will be sufficient for understanding most of the text.
Book Synopsis Quantum Computing in Solid State Systems by : Berardo Ruggiero
Download or read book Quantum Computing in Solid State Systems written by Berardo Ruggiero and published by Springer Science & Business Media. This book was released on 2006-05-30 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum Computation in Solid State Systems discusses experimental implementation of quantum computing for information processing devices; in particular observations of quantum behavior in several solid state systems are presented. The complementary theoretical contributions provide models of minimizing decoherence in the different systems. Most recent theoretical and experimental results on macroscopic quantum coherence of mesoscopic systems, as well as the realization of solid-state qubits and quantum gates are discussed. Particular attention is given to coherence effects in Josephson devices. Other solid state systems---including quantum dots, optical, ion, and spin devices---are also discussed.
Book Synopsis Quantum Computing: An Applied Approach by : Jack D. Hidary
Download or read book Quantum Computing: An Applied Approach written by Jack D. Hidary and published by Springer Nature. This book was released on 2021-09-29 with total page 422 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book integrates the foundations of quantum computing with a hands-on coding approach to this emerging field; it is the first to bring these elements together in an updated manner. This work is suitable for both academic coursework and corporate technical training. The second edition includes extensive updates and revisions, both to textual content and to the code. Sections have been added on quantum machine learning, quantum error correction, Dirac notation and more. This new edition benefits from the input of the many faculty, students, corporate engineering teams, and independent readers who have used the first edition. This volume comprises three books under one cover: Part I outlines the necessary foundations of quantum computing and quantum circuits. Part II walks through the canon of quantum computing algorithms and provides code on a range of quantum computing methods in current use. Part III covers the mathematical toolkit required to master quantum computing. Additional resources include a table of operators and circuit elements and a companion GitHub site providing code and updates. Jack D. Hidary is a research scientist in quantum computing and in AI at Alphabet X, formerly Google X.
Book Synopsis Quantum Computing Without Magic by : Zdzislaw Meglicki
Download or read book Quantum Computing Without Magic written by Zdzislaw Meglicki and published by MIT Press. This book was released on 2008-08-01 with total page 445 pages. Available in PDF, EPUB and Kindle. Book excerpt: How quantum computing is really done: a primer for future quantum device engineers. This text offers an introduction to quantum computing, with a special emphasis on basic quantum physics, experiment, and quantum devices. Unlike many other texts, which tend to emphasize algorithms, Quantum Computing Without Magic explains the requisite quantum physics in some depth, and then explains the devices themselves. It is a book for readers who, having already encountered quantum algorithms, may ask, “Yes, I can see how the algebra does the trick, but how can we actually do it?” By explaining the details in the context of the topics covered, this book strips the subject of the “magic” with which it is so often cloaked. Quantum Computing Without Magic covers the essential probability calculus; the qubit, its physics, manipulation and measurement, and how it can be implemented using superconducting electronics; quaternions and density operator formalism; unitary formalism and its application to Berry phase manipulation; the biqubit, the mysteries of entanglement, nonlocality, separability, biqubit classification, and the Schroedinger's Cat paradox; the controlled-NOT gate, its applications and implementations; and classical analogs of quantum devices and quantum processes. Quantum Computing Without Magic can be used as a complementary text for physics and electronic engineering undergraduates studying quantum computing and basic quantum mechanics, or as an introduction and guide for electronic engineers, mathematicians, computer scientists, or scholars in these fields who are interested in quantum computing and how it might fit into their research programs.
Book Synopsis Classical and Quantum Information by : Dan C. Marinescu
Download or read book Classical and Quantum Information written by Dan C. Marinescu and published by Academic Press. This book was released on 2011-01-07 with total page 745 pages. Available in PDF, EPUB and Kindle. Book excerpt: A new discipline, Quantum Information Science, has emerged in the last two decades of the twentieth century at the intersection of Physics, Mathematics, and Computer Science. Quantum Information Processing is an application of Quantum Information Science which covers the transformation, storage, and transmission of quantum information; it represents a revolutionary approach to information processing. Classical and Quantum Information covers topics in quantum computing, quantum information theory, and quantum error correction, three important areas of quantum information processing. Quantum information theory and quantum error correction build on the scope, concepts, methodology, and techniques developed in the context of their close relatives, classical information theory and classical error correcting codes. - Presents recent results in quantum computing, quantum information theory, and quantum error correcting codes - Covers both classical and quantum information theory and error correcting codes - The last chapter of the book covers physical implementation of quantum information processing devices - Covers the mathematical formalism and the concepts in Quantum Mechanics critical for understanding the properties and the transformations of quantum information
Book Synopsis Approaching Quantum Computing by : Marinescu
Download or read book Approaching Quantum Computing written by Marinescu and published by Pearson Education India. This book was released on 2008-09 with total page 406 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Physical Implementation of Quantum Walks by : Kia Manouchehri
Download or read book Physical Implementation of Quantum Walks written by Kia Manouchehri and published by Springer Science & Business Media. This book was released on 2013-08-23 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: Given the extensive application of random walks in virtually every science related discipline, we may be at the threshold of yet another problem solving paradigm with the advent of quantum walks. Over the past decade, quantum walks have been explored for their non-intuitive dynamics, which may hold the key to radically new quantum algorithms. This growing interest has been paralleled by a flurry of research into how one can implement quantum walks in laboratories. This book presents numerous proposals as well as actual experiments for such a physical realization, underpinned by a wide range of quantum, classical and hybrid technologies.
Book Synopsis Cavity Quantum Electrodynamics by : Sergio M. Dutra
Download or read book Cavity Quantum Electrodynamics written by Sergio M. Dutra and published by John Wiley & Sons. This book was released on 2005-05-27 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: What happens to light when it is trapped in a box? Cavity Quantum Electrodynamics addresses a fascinating question inphysics: what happens to light, and in particular to itsinteraction with matter, when it is trapped inside a box? With theaid of a model-building approach, readers discover the answer tothis question and come to appreciate its important applications incomputing, cryptography, quantum teleportation, andopto-electronics. Instead of taking a traditional approach thatrequires readers to first master a series of seemingly unconnectedmathematical techniques, this book engages the readers' interestand imagination by going straight to the point, introducing themathematics along the way as needed. Appendices are provided forthe additional mathematical theory. Researchers, scientists, and students of modern physics can referto Cavity Quantum Electrodynamics and examine the field thoroughly.Several key topics covered that readers cannot find in any otherquantum optics book include: * Introduction to the problem of the "vacuum catastrophe" and thecosmological constant * Detailed up-to-date account of cavity QED lasers andthresholdless lasing * Examination of cavities with movable walls * First-principles discussion about cavity QED in opencavities * Pedagogical account of microscopic quantization indielectrics Complementing the coverage of the most advanced theory andtechniques, the author provides context by discussing thehistorical evolution of the field and its discoveries. In thatspirit, "recommended reading," provided in each chapter, leadsreaders to both contemporary literature as well as key historicalpapers. Despite being one of many specialties within physics, cavityquantum electrodynamics serves as a window to many of thefundamental issues of physics. Cavity Quantum Electrodynamics willserve as an excellent resource for advanced undergraduate quantummechanics courses as well as for graduate students, researchers,and scientists who need a comprehensive introduction to the field.