Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Outlier And Anomaly Detection
Download Outlier And Anomaly Detection full books in PDF, epub, and Kindle. Read online Outlier And Anomaly Detection ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Outlier Detection: Techniques and Applications by : N. N. R. Ranga Suri
Download or read book Outlier Detection: Techniques and Applications written by N. N. R. Ranga Suri and published by Springer. This book was released on 2019-01-10 with total page 227 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, drawing on recent literature, highlights several methodologies for the detection of outliers and explains how to apply them to solve several interesting real-life problems. The detection of objects that deviate from the norm in a data set is an essential task in data mining due to its significance in many contemporary applications. More specifically, the detection of fraud in e-commerce transactions and discovering anomalies in network data have become prominent tasks, given recent developments in the field of information and communication technologies and security. Accordingly, the book sheds light on specific state-of-the-art algorithmic approaches such as the community-based analysis of networks and characterization of temporal outliers present in dynamic networks. It offers a valuable resource for young researchers working in data mining, helping them understand the technical depth of the outlier detection problem and devise innovative solutions to address related challenges.
Book Synopsis Outlier Analysis by : Charu C. Aggarwal
Download or read book Outlier Analysis written by Charu C. Aggarwal and published by Springer. This book was released on 2016-12-10 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides comprehensive coverage of the field of outlier analysis from a computer science point of view. It integrates methods from data mining, machine learning, and statistics within the computational framework and therefore appeals to multiple communities. The chapters of this book can be organized into three categories: Basic algorithms: Chapters 1 through 7 discuss the fundamental algorithms for outlier analysis, including probabilistic and statistical methods, linear methods, proximity-based methods, high-dimensional (subspace) methods, ensemble methods, and supervised methods. Domain-specific methods: Chapters 8 through 12 discuss outlier detection algorithms for various domains of data, such as text, categorical data, time-series data, discrete sequence data, spatial data, and network data. Applications: Chapter 13 is devoted to various applications of outlier analysis. Some guidance is also provided for the practitioner. The second edition of this book is more detailed and is written to appeal to both researchers and practitioners. Significant new material has been added on topics such as kernel methods, one-class support-vector machines, matrix factorization, neural networks, outlier ensembles, time-series methods, and subspace methods. It is written as a textbook and can be used for classroom teaching.
Book Synopsis Outlier Ensembles by : Charu C. Aggarwal
Download or read book Outlier Ensembles written by Charu C. Aggarwal and published by Springer. This book was released on 2017-04-06 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses a variety of methods for outlier ensembles and organizes them by the specific principles with which accuracy improvements are achieved. In addition, it covers the techniques with which such methods can be made more effective. A formal classification of these methods is provided, and the circumstances in which they work well are examined. The authors cover how outlier ensembles relate (both theoretically and practically) to the ensemble techniques used commonly for other data mining problems like classification. The similarities and (subtle) differences in the ensemble techniques for the classification and outlier detection problems are explored. These subtle differences do impact the design of ensemble algorithms for the latter problem. This book can be used for courses in data mining and related curricula. Many illustrative examples and exercises are provided in order to facilitate classroom teaching. A familiarity is assumed to the outlier detection problem and also to generic problem of ensemble analysis in classification. This is because many of the ensemble methods discussed in this book are adaptations from their counterparts in the classification domain. Some techniques explained in this book, such as wagging, randomized feature weighting, and geometric subsampling, provide new insights that are not available elsewhere. Also included is an analysis of the performance of various types of base detectors and their relative effectiveness. The book is valuable for researchers and practitioners for leveraging ensemble methods into optimal algorithmic design.
Book Synopsis Mining Imperfect Data by : Ronald K. Pearson
Download or read book Mining Imperfect Data written by Ronald K. Pearson and published by SIAM. This book was released on 2005-04-01 with total page 309 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses the problems that can occur in data mining, including their sources, consequences, detection and treatment.
Book Synopsis Modeling and Design of Secure Internet of Things by : Charles A. Kamhoua
Download or read book Modeling and Design of Secure Internet of Things written by Charles A. Kamhoua and published by John Wiley & Sons. This book was released on 2020-08-04 with total page 704 pages. Available in PDF, EPUB and Kindle. Book excerpt: An essential guide to the modeling and design techniques for securing systems that utilize the Internet of Things Modeling and Design of Secure Internet of Things offers a guide to the underlying foundations of modeling secure Internet of Things' (IoT) techniques. The contributors—noted experts on the topic—also include information on practical design issues that are relevant for application in the commercial and military domains. They also present several attack surfaces in IoT and secure solutions that need to be developed to reach their full potential. The book offers material on security analysis to help with in understanding and quantifying the impact of the new attack surfaces introduced by IoT deployments. The authors explore a wide range of themes including: modeling techniques to secure IoT, game theoretic models, cyber deception models, moving target defense models, adversarial machine learning models in military and commercial domains, and empirical validation of IoT platforms. This important book: Presents information on game-theory analysis of cyber deception Includes cutting-edge research finding such as IoT in the battlefield, advanced persistent threats, and intelligent and rapid honeynet generation Contains contributions from an international panel of experts Addresses design issues in developing secure IoT including secure SDN-based network orchestration, networked device identity management, multi-domain battlefield settings, and smart cities Written for researchers and experts in computer science and engineering, Modeling and Design of Secure Internet of Things contains expert contributions to provide the most recent modeling and design techniques for securing systems that utilize Internet of Things.
Book Synopsis Practical Machine Learning: A New Look at Anomaly Detection by : Ted Dunning
Download or read book Practical Machine Learning: A New Look at Anomaly Detection written by Ted Dunning and published by "O'Reilly Media, Inc.". This book was released on 2014-07-21 with total page 65 pages. Available in PDF, EPUB and Kindle. Book excerpt: Finding Data Anomalies You Didn't Know to Look For Anomaly detection is the detective work of machine learning: finding the unusual, catching the fraud, discovering strange activity in large and complex datasets. But, unlike Sherlock Holmes, you may not know what the puzzle is, much less what “suspects” you’re looking for. This O’Reilly report uses practical examples to explain how the underlying concepts of anomaly detection work. From banking security to natural sciences, medicine, and marketing, anomaly detection has many useful applications in this age of big data. And the search for anomalies will intensify once the Internet of Things spawns even more new types of data. The concepts described in this report will help you tackle anomaly detection in your own project. Use probabilistic models to predict what’s normal and contrast that to what you observe Set an adaptive threshold to determine which data falls outside of the normal range, using the t-digest algorithm Establish normal fluctuations in complex systems and signals (such as an EKG) with a more adaptive probablistic model Use historical data to discover anomalies in sporadic event streams, such as web traffic Learn how to use deviations in expected behavior to trigger fraud alerts
Book Synopsis Outlier Detection for Temporal Data by : Manish Gupta
Download or read book Outlier Detection for Temporal Data written by Manish Gupta and published by Springer. This book was released on 2014-04-14 with total page 110 pages. Available in PDF, EPUB and Kindle. Book excerpt: Outlier (or anomaly) detection is a very broad field which has been studied in the context of a large number of research areas like statistics, data mining, sensor networks, environmental science, distributed systems, spatio-temporal mining, etc. Initial research in outlier detection focused on time series-based outliers (in statistics). Since then, outlier detection has been studied on a large variety of data types including high-dimensional data, uncertain data, stream data, network data, time series data, spatial data, and spatio-temporal data. While there have been many tutorials and surveys for general outlier detection, we focus on outlier detection for temporal data in this book. A large number of applications generate temporal datasets. For example, in our everyday life, various kinds of records like credit, personnel, financial, judicial, medical, etc., are all temporal. This stresses the need for an organized and detailed study of outliers with respect to such temporal data. In the past decade, there has been a lot of research on various forms of temporal data including consecutive data snapshots, series of data snapshots and data streams. Besides the initial work on time series, researchers have focused on rich forms of data including multiple data streams, spatio-temporal data, network data, community distribution data, etc. Compared to general outlier detection, techniques for temporal outlier detection are very different. In this book, we will present an organized picture of both recent and past research in temporal outlier detection. We start with the basics and then ramp up the reader to the main ideas in state-of-the-art outlier detection techniques. We motivate the importance of temporal outlier detection and brief the challenges beyond usual outlier detection. Then, we list down a taxonomy of proposed techniques for temporal outlier detection. Such techniques broadly include statistical techniques (like AR models, Markov models, histograms, neural networks), distance- and density-based approaches, grouping-based approaches (clustering, community detection), network-based approaches, and spatio-temporal outlier detection approaches. We summarize by presenting a wide collection of applications where temporal outlier detection techniques have been applied to discover interesting outliers. Table of Contents: Preface / Acknowledgments / Figure Credits / Introduction and Challenges / Outlier Detection for Time Series and Data Sequences / Outlier Detection for Data Streams / Outlier Detection for Distributed Data Streams / Outlier Detection for Spatio-Temporal Data / Outlier Detection for Temporal Network Data / Applications of Outlier Detection for Temporal Data / Conclusions and Research Directions / Bibliography / Authors' Biographies
Download or read book Social Sensing written by Dong Wang and published by Morgan Kaufmann. This book was released on 2015-04-17 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt: Increasingly, human beings are sensors engaging directly with the mobile Internet. Individuals can now share real-time experiences at an unprecedented scale. Social Sensing: Building Reliable Systems on Unreliable Data looks at recent advances in the emerging field of social sensing, emphasizing the key problem faced by application designers: how to extract reliable information from data collected from largely unknown and possibly unreliable sources. The book explains how a myriad of societal applications can be derived from this massive amount of data collected and shared by average individuals. The title offers theoretical foundations to support emerging data-driven cyber-physical applications and touches on key issues such as privacy. The authors present solutions based on recent research and novel ideas that leverage techniques from cyber-physical systems, sensor networks, machine learning, data mining, and information fusion. Offers a unique interdisciplinary perspective bridging social networks, big data, cyber-physical systems, and reliability Presents novel theoretical foundations for assured social sensing and modeling humans as sensors Includes case studies and application examples based on real data sets Supplemental material includes sample datasets and fact-finding software that implements the main algorithms described in the book
Book Synopsis Anomaly Detection Principles and Algorithms by : Kishan G. Mehrotra
Download or read book Anomaly Detection Principles and Algorithms written by Kishan G. Mehrotra and published by Springer. This book was released on 2017-11-18 with total page 229 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a readable and elegant presentation of the principles of anomaly detection,providing an easy introduction for newcomers to the field. A large number of algorithms are succinctly described, along with a presentation of their strengths and weaknesses. The authors also cover algorithms that address different kinds of problems of interest with single and multiple time series data and multi-dimensional data. New ensemble anomaly detection algorithms are described, utilizing the benefits provided by diverse algorithms, each of which work well on some kinds of data. With advancements in technology and the extensive use of the internet as a medium for communications and commerce, there has been a tremendous increase in the threats faced by individuals and organizations from attackers and criminal entities. Variations in the observable behaviors of individuals (from others and from their own past behaviors) have been found to be useful in predicting potential problems of various kinds. Hence computer scientists and statisticians have been conducting research on automatically identifying anomalies in large datasets. This book will primarily target practitioners and researchers who are newcomers to the area of modern anomaly detection techniques. Advanced-level students in computer science will also find this book helpful with their studies.
Book Synopsis Secondary Analysis of Electronic Health Records by : MIT Critical Data
Download or read book Secondary Analysis of Electronic Health Records written by MIT Critical Data and published by Springer. This book was released on 2016-09-09 with total page 435 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book trains the next generation of scientists representing different disciplines to leverage the data generated during routine patient care. It formulates a more complete lexicon of evidence-based recommendations and support shared, ethical decision making by doctors with their patients. Diagnostic and therapeutic technologies continue to evolve rapidly, and both individual practitioners and clinical teams face increasingly complex ethical decisions. Unfortunately, the current state of medical knowledge does not provide the guidance to make the majority of clinical decisions on the basis of evidence. The present research infrastructure is inefficient and frequently produces unreliable results that cannot be replicated. Even randomized controlled trials (RCTs), the traditional gold standards of the research reliability hierarchy, are not without limitations. They can be costly, labor intensive, and slow, and can return results that are seldom generalizable to every patient population. Furthermore, many pertinent but unresolved clinical and medical systems issues do not seem to have attracted the interest of the research enterprise, which has come to focus instead on cellular and molecular investigations and single-agent (e.g., a drug or device) effects. For clinicians, the end result is a bit of a “data desert” when it comes to making decisions. The new research infrastructure proposed in this book will help the medical profession to make ethically sound and well informed decisions for their patients.
Book Synopsis Identification of Outliers by : D. Hawkins
Download or read book Identification of Outliers written by D. Hawkins and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: The problem of outliers is one of the oldest in statistics, and during the last century and a half interest in it has waxed and waned several times. Currently it is once again an active research area after some years of relative neglect, and recent work has solved a number of old problems in outlier theory, and identified new ones. The major results are, however, scattered amongst many journal articles, and for some time there has been a clear need to bring them together in one place. That was the original intention of this monograph: but during execution it became clear that the existing theory of outliers was deficient in several areas, and so the monograph also contains a number of new results and conjectures. In view of the enormous volume ofliterature on the outlier problem and its cousins, no attempt has been made to make the coverage exhaustive. The material is concerned almost entirely with the use of outlier tests that are known (or may reasonably be expected) to be optimal in some way. Such topics as robust estimation are largely ignored, being covered more adequately in other sources. The numerous ad hoc statistics proposed in the early work on the grounds of intuitive appeal or computational simplicity also are not discussed in any detail.
Book Synopsis Knowledge Discovery from Sensor Data by : Mohamed Medhat Gaber
Download or read book Knowledge Discovery from Sensor Data written by Mohamed Medhat Gaber and published by Springer Science & Business Media. This book was released on 2010-04-14 with total page 235 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains thoroughly refereed extended papers from the Second International Workshop on Knowledge Discovery from Sensor Data, Sensor-KDD 2008, held in Las Vegas, NV, USA, in August 2008. The 12 revised papers presented together with an invited paper were carefully reviewed and selected from numerous submissions. The papers feature important aspects of knowledge discovery from sensor data, e.g., data mining for diagnostic debugging; incremental histogram distribution for change detection; situation-aware adaptive visualization; WiFi mining; mobile sensor data mining; incremental anomaly detection; and spatiotemporal neighborhood discovery for sensor data.
Book Synopsis Data Mining: Concepts and Techniques by : Jiawei Han
Download or read book Data Mining: Concepts and Techniques written by Jiawei Han and published by Elsevier. This book was released on 2011-06-09 with total page 740 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Mining: Concepts and Techniques provides the concepts and techniques in processing gathered data or information, which will be used in various applications. Specifically, it explains data mining and the tools used in discovering knowledge from the collected data. This book is referred as the knowledge discovery from data (KDD). It focuses on the feasibility, usefulness, effectiveness, and scalability of techniques of large data sets. After describing data mining, this edition explains the methods of knowing, preprocessing, processing, and warehousing data. It then presents information about data warehouses, online analytical processing (OLAP), and data cube technology. Then, the methods involved in mining frequent patterns, associations, and correlations for large data sets are described. The book details the methods for data classification and introduces the concepts and methods for data clustering. The remaining chapters discuss the outlier detection and the trends, applications, and research frontiers in data mining. This book is intended for Computer Science students, application developers, business professionals, and researchers who seek information on data mining. - Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects - Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields - Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of your data
Book Synopsis Machine Learning for Subsurface Characterization by : Siddharth Misra
Download or read book Machine Learning for Subsurface Characterization written by Siddharth Misra and published by Gulf Professional Publishing. This book was released on 2019-10-12 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine Learning for Subsurface Characterization develops and applies neural networks, random forests, deep learning, unsupervised learning, Bayesian frameworks, and clustering methods for subsurface characterization. Machine learning (ML) focusses on developing computational methods/algorithms that learn to recognize patterns and quantify functional relationships by processing large data sets, also referred to as the "big data." Deep learning (DL) is a subset of machine learning that processes "big data" to construct numerous layers of abstraction to accomplish the learning task. DL methods do not require the manual step of extracting/engineering features; however, it requires us to provide large amounts of data along with high-performance computing to obtain reliable results in a timely manner. This reference helps the engineers, geophysicists, and geoscientists get familiar with data science and analytics terminology relevant to subsurface characterization and demonstrates the use of data-driven methods for outlier detection, geomechanical/electromagnetic characterization, image analysis, fluid saturation estimation, and pore-scale characterization in the subsurface. - Learn from 13 practical case studies using field, laboratory, and simulation data - Become knowledgeable with data science and analytics terminology relevant to subsurface characterization - Learn frameworks, concepts, and methods important for the engineer's and geoscientist's toolbox needed to support
Book Synopsis Machine Learning and Data Mining in Pattern Recognition by : Petra Perner
Download or read book Machine Learning and Data Mining in Pattern Recognition written by Petra Perner and published by Springer Science & Business Media. This book was released on 2009-07-21 with total page 837 pages. Available in PDF, EPUB and Kindle. Book excerpt: There is no royal road to science, and only those who do not dread the fatiguing climb of its steep paths have a chance of gaining its luminous summits. Karl Marx A Universial Genius of the 19th Century Many scientists from all over the world during the past two years since the MLDM 2007 have come along on the stony way to the sunny summit of science and have worked hard on new ideas and applications in the area of data mining in pattern r- ognition. Our thanks go to all those who took part in this year's MLDM. We appre- ate their submissions and the ideas shared with the Program Committee. We received over 205 submissions from all over the world to the International Conference on - chine Learning and Data Mining, MLDM 2009. The Program Committee carefully selected the best papers for this year’s program and gave detailed comments on each submitted paper. There were 63 papers selected for oral presentation and 17 papers for poster presentation. The topics range from theoretical topics for classification, clustering, association rule and pattern mining to specific data-mining methods for the different multimedia data types such as image mining, text mining, video mining and Web mining. Among these topics this year were special contributions to subtopics such as attribute discre- zation and data preparation, novelty and outlier detection, and distances and simila- ties.
Book Synopsis Volume 16: How to Detect and Handle Outliers by : Boris Iglewicz
Download or read book Volume 16: How to Detect and Handle Outliers written by Boris Iglewicz and published by Quality Press. This book was released on 1993-01-08 with total page 99 pages. Available in PDF, EPUB and Kindle. Book excerpt: Outliers are the key focus of this book. The authors concentrate on the practical aspects of dealing with outliers in the forms of data that arise most often in applications: single and multiple samples, linear regression, and factorial experiments. Available only as an E-Book.
Book Synopsis Managing Cyber Threats by : Vipin Kumar
Download or read book Managing Cyber Threats written by Vipin Kumar and published by Springer Science & Business Media. This book was released on 2005-11-23 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern society depends critically on computers that control and manage the systems on which we depend in many aspects of our daily lives. While this provides conveniences of a level unimaginable just a few years ago, it also leaves us vulnerable to attacks on the computers managing these systems. In recent times the explosion in cyber attacks, including viruses, worms, and intrusions, has turned this vulnerability into a clear and visible threat. Due to the escalating number and increased sophistication of cyber attacks, it has become important to develop a broad range of techniques, which can ensure that the information infrastructure continues to operate smoothly, even in the presence of dire and continuous threats. This book brings together the latest techniques for managing cyber threats, developed by some of the world’s leading experts in the area. The book includes broad surveys on a number of topics, as well as specific techniques. It provides an excellent reference point for researchers and practitioners in the government, academic, and industrial communities who want to understand the issues and challenges in this area of growing worldwide importance.