Noncommutative Structures in Mathematics and Physics

Download Noncommutative Structures in Mathematics and Physics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9401008361
Total Pages : 472 pages
Book Rating : 4.4/5 (1 download)

DOWNLOAD NOW!


Book Synopsis Noncommutative Structures in Mathematics and Physics by : S. Duplij

Download or read book Noncommutative Structures in Mathematics and Physics written by S. Duplij and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: A presentation of outstanding achievements and ideas, of both eastern and western scientists, both mathematicians and physicists. Their presentations of recent work on quantum field theory, supergravity, M-theory, black holes and quantum gravity, together with research into noncommutative geometry, Hopf algebras, representation theory, categories and quantum groups, take the reader to the forefront of the latest developments. Other topics covered include supergravity and branes, supersymmetric quantum mechanics and superparticles, (super) black holes, superalgebra representations, and SUSY GUT phenomenology. Essential reading for workers in the modern methods of theoretical and mathematical physics.

Orthogonal Polynomials of Several Variables

Download Orthogonal Polynomials of Several Variables PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107071895
Total Pages : 439 pages
Book Rating : 4.1/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Orthogonal Polynomials of Several Variables by : Charles F. Dunkl

Download or read book Orthogonal Polynomials of Several Variables written by Charles F. Dunkl and published by Cambridge University Press. This book was released on 2014-08-21 with total page 439 pages. Available in PDF, EPUB and Kindle. Book excerpt: Updated throughout, this revised edition contains 25% new material covering progress made in the field over the past decade.

Orthogonal Polynomials of Several Variables

Download Orthogonal Polynomials of Several Variables PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 0521800439
Total Pages : 408 pages
Book Rating : 4.5/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Orthogonal Polynomials of Several Variables by : Charles F. Dunkl

Download or read book Orthogonal Polynomials of Several Variables written by Charles F. Dunkl and published by Cambridge University Press. This book was released on 2001-02-22 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: Orthogonal polynomials of several variables, approximation theory, symmetry-group methods.

An Introduction to Lie Groups and Lie Algebras

Download An Introduction to Lie Groups and Lie Algebras PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 0521889693
Total Pages : 237 pages
Book Rating : 4.5/5 (218 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Lie Groups and Lie Algebras by : Alexander A. Kirillov

Download or read book An Introduction to Lie Groups and Lie Algebras written by Alexander A. Kirillov and published by Cambridge University Press. This book was released on 2008-07-31 with total page 237 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to semisimple Lie algebras. It is concise and informal, with numerous exercises and examples.

Orthogonal Polynomials

Download Orthogonal Polynomials PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821810235
Total Pages : 448 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Orthogonal Polynomials by : Gabor Szegš

Download or read book Orthogonal Polynomials written by Gabor Szegš and published by American Mathematical Soc.. This book was released on 1939-12-31 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: The general theory of orthogonal polynomials was developed in the late 19th century from a study of continued fractions by P. L. Chebyshev, even though special cases were introduced earlier by Legendre, Hermite, Jacobi, Laguerre, and Chebyshev himself. It was further developed by A. A. Markov, T. J. Stieltjes, and many other mathematicians. The book by Szego, originally published in 1939, is the first monograph devoted to the theory of orthogonal polynomials and its applications in many areas, including analysis, differential equations, probability and mathematical physics. Even after all the years that have passed since the book first appeared, and with many other books on the subject published since then, this classic monograph by Szego remains an indispensable resource both as a textbook and as a reference book. It can be recommended to anyone who wants to be acquainted with this central topic of mathematical analysis.

Introduction to Lie Algebras

Download Introduction to Lie Algebras PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1846284902
Total Pages : 254 pages
Book Rating : 4.8/5 (462 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Lie Algebras by : K. Erdmann

Download or read book Introduction to Lie Algebras written by K. Erdmann and published by Springer Science & Business Media. This book was released on 2006-09-28 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lie groups and Lie algebras have become essential to many parts of mathematics and theoretical physics, with Lie algebras a central object of interest in their own right. This book provides an elementary introduction to Lie algebras based on a lecture course given to fourth-year undergraduates. The only prerequisite is some linear algebra and an appendix summarizes the main facts that are needed. The treatment is kept as simple as possible with no attempt at full generality. Numerous worked examples and exercises are provided to test understanding, along with more demanding problems, several of which have solutions. Introduction to Lie Algebras covers the core material required for almost all other work in Lie theory and provides a self-study guide suitable for undergraduate students in their final year and graduate students and researchers in mathematics and theoretical physics.

The Random Matrix Theory of the Classical Compact Groups

Download The Random Matrix Theory of the Classical Compact Groups PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108317995
Total Pages : 225 pages
Book Rating : 4.1/5 (83 download)

DOWNLOAD NOW!


Book Synopsis The Random Matrix Theory of the Classical Compact Groups by : Elizabeth S. Meckes

Download or read book The Random Matrix Theory of the Classical Compact Groups written by Elizabeth S. Meckes and published by Cambridge University Press. This book was released on 2019-08-01 with total page 225 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first book to provide a comprehensive overview of foundational results and recent progress in the study of random matrices from the classical compact groups, drawing on the subject's deep connections to geometry, analysis, algebra, physics, and statistics. The book sets a foundation with an introduction to the groups themselves and six different constructions of Haar measure. Classical and recent results are then presented in a digested, accessible form, including the following: results on the joint distributions of the entries; an extensive treatment of eigenvalue distributions, including the Weyl integration formula, moment formulae, and limit theorems and large deviations for the spectral measures; concentration of measure with applications both within random matrix theory and in high dimensional geometry; and results on characteristic polynomials with connections to the Riemann zeta function. This book will be a useful reference for researchers and an accessible introduction for students in related fields.

Mathematical Reviews

Download Mathematical Reviews PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 1078 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Mathematical Reviews by :

Download or read book Mathematical Reviews written by and published by . This book was released on 2004 with total page 1078 pages. Available in PDF, EPUB and Kindle. Book excerpt:

General Orthogonal Polynomials

Download General Orthogonal Polynomials PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521415347
Total Pages : 272 pages
Book Rating : 4.4/5 (153 download)

DOWNLOAD NOW!


Book Synopsis General Orthogonal Polynomials by : Herbert Stahl

Download or read book General Orthogonal Polynomials written by Herbert Stahl and published by Cambridge University Press. This book was released on 1992-04-24 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: An encyclopedic presentation of general orthogonal polynomials, placing emphasis on asymptotic behaviour and zero distribution.

Topics in Polynomials of One and Several Variables and Their Applications

Download Topics in Polynomials of One and Several Variables and Their Applications PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9789810206147
Total Pages : 658 pages
Book Rating : 4.2/5 (61 download)

DOWNLOAD NOW!


Book Synopsis Topics in Polynomials of One and Several Variables and Their Applications by : Themistocles M. Rassias

Download or read book Topics in Polynomials of One and Several Variables and Their Applications written by Themistocles M. Rassias and published by World Scientific. This book was released on 1993 with total page 658 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents an account of some of the most important work that has been done on various research problems in the theory of polynomials of one and several variables and their applications. It is dedicated to P L Chebyshev, a leading Russian mathematician.

A Dynamical Approach to Random Matrix Theory

Download A Dynamical Approach to Random Matrix Theory PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470436485
Total Pages : 239 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis A Dynamical Approach to Random Matrix Theory by : László Erdős

Download or read book A Dynamical Approach to Random Matrix Theory written by László Erdős and published by American Mathematical Soc.. This book was released on 2017-08-30 with total page 239 pages. Available in PDF, EPUB and Kindle. Book excerpt: A co-publication of the AMS and the Courant Institute of Mathematical Sciences at New York University This book is a concise and self-contained introduction of recent techniques to prove local spectral universality for large random matrices. Random matrix theory is a fast expanding research area, and this book mainly focuses on the methods that the authors participated in developing over the past few years. Many other interesting topics are not included, and neither are several new developments within the framework of these methods. The authors have chosen instead to present key concepts that they believe are the core of these methods and should be relevant for future applications. They keep technicalities to a minimum to make the book accessible to graduate students. With this in mind, they include in this book the basic notions and tools for high-dimensional analysis, such as large deviation, entropy, Dirichlet form, and the logarithmic Sobolev inequality. This manuscript has been developed and continuously improved over the last five years. The authors have taught this material in several regular graduate courses at Harvard, Munich, and Vienna, in addition to various summer schools and short courses. Titles in this series are co-published with the Courant Institute of Mathematical Sciences at New York University.

Introduction to Lie Algebras and Representation Theory

Download Introduction to Lie Algebras and Representation Theory PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461263980
Total Pages : 189 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Lie Algebras and Representation Theory by : J.E. Humphreys

Download or read book Introduction to Lie Algebras and Representation Theory written by J.E. Humphreys and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 189 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is designed to introduce the reader to the theory of semisimple Lie algebras over an algebraically closed field of characteristic 0, with emphasis on representations. A good knowledge of linear algebra (including eigenvalues, bilinear forms, euclidean spaces, and tensor products of vector spaces) is presupposed, as well as some acquaintance with the methods of abstract algebra. The first four chapters might well be read by a bright undergraduate; however, the remaining three chapters are admittedly a little more demanding. Besides being useful in many parts of mathematics and physics, the theory of semisimple Lie algebras is inherently attractive, combining as it does a certain amount of depth and a satisfying degree of completeness in its basic results. Since Jacobson's book appeared a decade ago, improvements have been made even in the classical parts of the theory. I have tried to incor porate some of them here and to provide easier access to the subject for non-specialists. For the specialist, the following features should be noted: (I) The Jordan-Chevalley decomposition of linear transformations is emphasized, with "toral" subalgebras replacing the more traditional Cartan subalgebras in the semisimple case. (2) The conjugacy theorem for Cartan subalgebras is proved (following D. J. Winter and G. D. Mostow) by elementary Lie algebra methods, avoiding the use of algebraic geometry.

Lie Groups and Algebraic Groups

Download Lie Groups and Algebraic Groups PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 364274334X
Total Pages : 347 pages
Book Rating : 4.6/5 (427 download)

DOWNLOAD NOW!


Book Synopsis Lie Groups and Algebraic Groups by : Arkadij L. Onishchik

Download or read book Lie Groups and Algebraic Groups written by Arkadij L. Onishchik and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 347 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is based on the notes of the authors' seminar on algebraic and Lie groups held at the Department of Mechanics and Mathematics of Moscow University in 1967/68. Our guiding idea was to present in the most economic way the theory of semisimple Lie groups on the basis of the theory of algebraic groups. Our main sources were A. Borel's paper [34], C. ChevalIey's seminar [14], seminar "Sophus Lie" [15] and monographs by C. Chevalley [4], N. Jacobson [9] and J-P. Serre [16, 17]. In preparing this book we have completely rearranged these notes and added two new chapters: "Lie groups" and "Real semisimple Lie groups". Several traditional topics of Lie algebra theory, however, are left entirely disregarded, e.g. universal enveloping algebras, characters of linear representations and (co)homology of Lie algebras. A distinctive feature of this book is that almost all the material is presented as a sequence of problems, as it had been in the first draft of the seminar's notes. We believe that solving these problems may help the reader to feel the seminar's atmosphere and master the theory. Nevertheless, all the non-trivial ideas, and sometimes solutions, are contained in hints given at the end of each section. The proofs of certain theorems, which we consider more difficult, are given directly in the main text. The book also contains exercises, the majority of which are an essential complement to the main contents.

Quantum Theory, Groups and Representations

Download Quantum Theory, Groups and Representations PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319646125
Total Pages : 659 pages
Book Rating : 4.3/5 (196 download)

DOWNLOAD NOW!


Book Synopsis Quantum Theory, Groups and Representations by : Peter Woit

Download or read book Quantum Theory, Groups and Representations written by Peter Woit and published by Springer. This book was released on 2017-11-01 with total page 659 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text systematically presents the basics of quantum mechanics, emphasizing the role of Lie groups, Lie algebras, and their unitary representations. The mathematical structure of the subject is brought to the fore, intentionally avoiding significant overlap with material from standard physics courses in quantum mechanics and quantum field theory. The level of presentation is attractive to mathematics students looking to learn about both quantum mechanics and representation theory, while also appealing to physics students who would like to know more about the mathematics underlying the subject. This text showcases the numerous differences between typical mathematical and physical treatments of the subject. The latter portions of the book focus on central mathematical objects that occur in the Standard Model of particle physics, underlining the deep and intimate connections between mathematics and the physical world. While an elementary physics course of some kind would be helpful to the reader, no specific background in physics is assumed, making this book accessible to students with a grounding in multivariable calculus and linear algebra. Many exercises are provided to develop the reader's understanding of and facility in quantum-theoretical concepts and calculations.

Lie Algebras: Theory and Algorithms

Download Lie Algebras: Theory and Algorithms PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0080535453
Total Pages : 407 pages
Book Rating : 4.0/5 (85 download)

DOWNLOAD NOW!


Book Synopsis Lie Algebras: Theory and Algorithms by : W.A. de Graaf

Download or read book Lie Algebras: Theory and Algorithms written by W.A. de Graaf and published by Elsevier. This book was released on 2000-02-04 with total page 407 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of the present work is two-fold. Firstly it aims at a giving an account of many existing algorithms for calculating with finite-dimensional Lie algebras. Secondly, the book provides an introduction into the theory of finite-dimensional Lie algebras. These two subject areas are intimately related. First of all, the algorithmic perspective often invites a different approach to the theoretical material than the one taken in various other monographs (e.g., [42], [48], [77], [86]). Indeed, on various occasions the knowledge of certain algorithms allows us to obtain a straightforward proof of theoretical results (we mention the proof of the Poincaré-Birkhoff-Witt theorem and the proof of Iwasawa's theorem as examples). Also proofs that contain algorithmic constructions are explicitly formulated as algorithms (an example is the isomorphism theorem for semisimple Lie algebras that constructs an isomorphism in case it exists). Secondly, the algorithms can be used to arrive at a better understanding of the theory. Performing the algorithms in concrete examples, calculating with the concepts involved, really brings the theory of life.

Toeplitz and Circulant Matrices

Download Toeplitz and Circulant Matrices PDF Online Free

Author :
Publisher : Now Publishers Inc
ISBN 13 : 1933019239
Total Pages : 105 pages
Book Rating : 4.9/5 (33 download)

DOWNLOAD NOW!


Book Synopsis Toeplitz and Circulant Matrices by : Robert M. Gray

Download or read book Toeplitz and Circulant Matrices written by Robert M. Gray and published by Now Publishers Inc. This book was released on 2006 with total page 105 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fundamental theorems on the asymptotic behavior of eigenvalues, inverses, and products of banded Toeplitz matrices and Toeplitz matrices with absolutely summable elements are derived in a tutorial manner. Mathematical elegance and generality are sacrificed for conceptual simplicity and insight in the hope of making these results available to engineers lacking either the background or endurance to attack the mathematical literature on the subject. By limiting the generality of the matrices considered, the essential ideas and results can be conveyed in a more intuitive manner without the mathematical machinery required for the most general cases. As an application the results are applied to the study of the covariance matrices and their factors of linear models of discrete time random processes. The fundamental theorems on the asymptotic behavior of eigenvalues, inverses, and products of banded Toeplitz matrices and Toeplitz matrices with absolutely summable elements are derived in a tutorial manner. Mathematical elegance and generality are sacrificed for conceptual simplicity and insight in the hope of making these results available to engineers lacking either the background or endurance to attack the mathematical literature on the subject. By limiting the generality of the matrices considered, the essential ideas and results can be conveyed in a more intuitive manner without the mathematical machinery required for the most general cases. As an application the results are applied to the study of the covariance matrices and their factors of linear models of discrete time random processes.

High-Dimensional Probability

Download High-Dimensional Probability PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108415199
Total Pages : 299 pages
Book Rating : 4.1/5 (84 download)

DOWNLOAD NOW!


Book Synopsis High-Dimensional Probability by : Roman Vershynin

Download or read book High-Dimensional Probability written by Roman Vershynin and published by Cambridge University Press. This book was released on 2018-09-27 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.