Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
On Error Bounds Ans Newton Type Methods For Generalized Nash Equilibriium Problems
Download On Error Bounds Ans Newton Type Methods For Generalized Nash Equilibriium Problems full books in PDF, epub, and Kindle. Read online On Error Bounds Ans Newton Type Methods For Generalized Nash Equilibriium Problems ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Nonlinear Programming Techniques for Equilibria by : Giancarlo Bigi
Download or read book Nonlinear Programming Techniques for Equilibria written by Giancarlo Bigi and published by Springer. This book was released on 2018-09-20 with total page 127 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book considers a range of problems in operations research, which are formulated through various mathematical models such as complementarity, variational inequalities, multiobjective optimization, fixed point problems, noncooperative games and inverse optimization. Moreover, the book subsumes all these models under a common structure that allows them to be formulated in a unique format: the Ky Fan inequality. It subsequently focuses on this unifying equilibrium format, providing a comprehensive overview of the main theoretical results and solution algorithms, together with a wealth of applications and numerical examples. Particular emphasis is placed on the role of nonlinear optimization techniques – e.g. convex optimization, nonsmooth calculus, proximal point and descent algorithms – as valuable tools for analyzing and solving Ky Fan inequalities.
Book Synopsis Recent Developments in Mathematical, Statistical and Computational Sciences by : D. Marc Kilgour
Download or read book Recent Developments in Mathematical, Statistical and Computational Sciences written by D. Marc Kilgour and published by Springer Nature. This book was released on 2021-08-29 with total page 728 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes an up-to-date account of principles, methods, and tools for mathematical and statistical modelling in a wide range of research fields, including medicine, health sciences, biology, environmental science, engineering, physics, chemistry, computation, finance, economics, and social sciences. It presents original solutions to real-world problems, emphasizes the coordinated development of theories and applications, and promotes interdisciplinary collaboration among mathematicians, statisticians, and researchers in other disciplines. Based on a highly successful meeting, the International Conference on Applied Mathematics, Modeling and Computational Science, AMMCS 2019, held from August 18 to 23, 2019, on the main campus of Wilfrid Laurier University, Waterloo, Canada, the contributions are the results of submissions from the conference participants. They provide readers with a broader view of the methods, ideas and tools used in mathematical, statistical and computational sciences.
Book Synopsis Recent Trends in Mathematical Modeling and High Performance Computing by : Vinai K. Singh
Download or read book Recent Trends in Mathematical Modeling and High Performance Computing written by Vinai K. Singh and published by Springer Nature. This book was released on 2021-08-23 with total page 441 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume explores the connections between mathematical modeling, computational methods, and high performance computing, and how recent developments in these areas can help to solve complex problems in the natural sciences and engineering. The content of the book is based on talks and papers presented at the conference Modern Mathematical Methods and High Performance Computing in Science & Technology (M3HPCST), held at Inderprastha Engineering College in Ghaziabad, India in January 2020. A wide range of both theoretical and applied topics are covered in detail, including the conceptualization of infinity, efficient domain decomposition, high capacity wireless communication, infectious disease modeling, and more. These chapters are organized around the following areas: Partial and ordinary differential equations Optimization and optimal control High performance and scientific computing Stochastic models and statistics Recent Trends in Mathematical Modeling and High Performance Computing will be of interest to researchers in both mathematics and engineering, as well as to practitioners who face complex models and extensive computations.
Book Synopsis Large-Scale Nonlinear Optimization by : Gianni Pillo
Download or read book Large-Scale Nonlinear Optimization written by Gianni Pillo and published by Springer Science & Business Media. This book was released on 2006-06-03 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reviews and discusses recent advances in the development of methods and algorithms for nonlinear optimization and its applications, focusing on the large-dimensional case, the current forefront of much research. Individual chapters, contributed by eminent authorities, provide an up-to-date overview of the field from different and complementary standpoints, including theoretical analysis, algorithmic development, implementation issues and applications.
Book Synopsis Finite-Dimensional Variational Inequalities and Complementarity Problems by : Francisco Facchinei
Download or read book Finite-Dimensional Variational Inequalities and Complementarity Problems written by Francisco Facchinei and published by Springer Science & Business Media. This book was released on 2007-06-04 with total page 698 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is part two of a two-volume work presenting a comprehensive treatment of the finite-dimensional variational inequality and complementarity problem. It details algorithms for solving finite dimensional variational inequalities and complementarity problems. Coverage includes abundant exercises as well as an extensive bibliography. The book will be an enduring reference on the subject and provide the foundation for its sustained growth.
Book Synopsis Implicit Functions and Solution Mappings by : Asen L. Dontchev
Download or read book Implicit Functions and Solution Mappings written by Asen L. Dontchev and published by Springer. This book was released on 2014-06-18 with total page 495 pages. Available in PDF, EPUB and Kindle. Book excerpt: The implicit function theorem is one of the most important theorems in analysis and its many variants are basic tools in partial differential equations and numerical analysis. This second edition of Implicit Functions and Solution Mappings presents an updated and more complete picture of the field by including solutions of problems that have been solved since the first edition was published, and places old and new results in a broader perspective. The purpose of this self-contained work is to provide a reference on the topic and to provide a unified collection of a number of results which are currently scattered throughout the literature. Updates to this edition include new sections in almost all chapters, new exercises and examples, updated commentaries to chapters and an enlarged index and references section.
Download or read book Mathematical Reviews written by and published by . This book was released on 2004 with total page 1804 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Mathematics and Computation by : Avi Wigderson
Download or read book Mathematics and Computation written by Avi Wigderson and published by Princeton University Press. This book was released on 2019-10-29 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the winner of the Turing Award and the Abel Prize, an introduction to computational complexity theory, its connections and interactions with mathematics, and its central role in the natural and social sciences, technology, and philosophy Mathematics and Computation provides a broad, conceptual overview of computational complexity theory—the mathematical study of efficient computation. With important practical applications to computer science and industry, computational complexity theory has evolved into a highly interdisciplinary field, with strong links to most mathematical areas and to a growing number of scientific endeavors. Avi Wigderson takes a sweeping survey of complexity theory, emphasizing the field’s insights and challenges. He explains the ideas and motivations leading to key models, notions, and results. In particular, he looks at algorithms and complexity, computations and proofs, randomness and interaction, quantum and arithmetic computation, and cryptography and learning, all as parts of a cohesive whole with numerous cross-influences. Wigderson illustrates the immense breadth of the field, its beauty and richness, and its diverse and growing interactions with other areas of mathematics. He ends with a comprehensive look at the theory of computation, its methodology and aspirations, and the unique and fundamental ways in which it has shaped and will further shape science, technology, and society. For further reading, an extensive bibliography is provided for all topics covered. Mathematics and Computation is useful for undergraduate and graduate students in mathematics, computer science, and related fields, as well as researchers and teachers in these fields. Many parts require little background, and serve as an invitation to newcomers seeking an introduction to the theory of computation. Comprehensive coverage of computational complexity theory, and beyond High-level, intuitive exposition, which brings conceptual clarity to this central and dynamic scientific discipline Historical accounts of the evolution and motivations of central concepts and models A broad view of the theory of computation's influence on science, technology, and society Extensive bibliography
Book Synopsis Numerical Methods in Economics by : Kenneth L. Judd
Download or read book Numerical Methods in Economics written by Kenneth L. Judd and published by MIT Press. This book was released on 2023-04-04 with total page 657 pages. Available in PDF, EPUB and Kindle. Book excerpt: To harness the full power of computer technology, economists need to use a broad range of mathematical techniques. In this book, Kenneth Judd presents techniques from the numerical analysis and applied mathematics literatures and shows how to use them in economic analyses. The book is divided into five parts. Part I provides a general introduction. Part II presents basics from numerical analysis on R^n, including linear equations, iterative methods, optimization, nonlinear equations, approximation methods, numerical integration and differentiation, and Monte Carlo methods. Part III covers methods for dynamic problems, including finite difference methods, projection methods, and numerical dynamic programming. Part IV covers perturbation and asymptotic solution methods. Finally, Part V covers applications to dynamic equilibrium analysis, including solution methods for perfect foresight models and rational expectation models. A website contains supplementary material including programs and answers to exercises.
Book Synopsis Finite-Dimensional Variational Inequalities and Complementarity Problems by : Francisco Facchinei
Download or read book Finite-Dimensional Variational Inequalities and Complementarity Problems written by Francisco Facchinei and published by Springer Science & Business Media. This book was released on 2007-06-14 with total page 724 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is part one of a two-volume work presenting a comprehensive treatment of the finite-dimensional variational inequality and complementarity problem. It covers the basic theory of finite dimensional variational inequalities and complementarity problems. Coverage includes abundant exercises as well as an extensive bibliography. The book will be an enduring reference on the subject and provide the foundation for its sustained growth.
Download or read book Applied Mechanics Reviews written by and published by . This book was released on 1985 with total page 864 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Discrete Choice Methods with Simulation by : Kenneth Train
Download or read book Discrete Choice Methods with Simulation written by Kenneth Train and published by Cambridge University Press. This book was released on 2009-07-06 with total page 399 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the new generation of discrete choice methods, focusing on the many advances that are made possible by simulation. Researchers use these statistical methods to examine the choices that consumers, households, firms, and other agents make. Each of the major models is covered: logit, generalized extreme value, or GEV (including nested and cross-nested logits), probit, and mixed logit, plus a variety of specifications that build on these basics. Simulation-assisted estimation procedures are investigated and compared, including maximum stimulated likelihood, method of simulated moments, and method of simulated scores. Procedures for drawing from densities are described, including variance reduction techniques such as anithetics and Halton draws. Recent advances in Bayesian procedures are explored, including the use of the Metropolis-Hastings algorithm and its variant Gibbs sampling. The second edition adds chapters on endogeneity and expectation-maximization (EM) algorithms. No other book incorporates all these fields, which have arisen in the past 25 years. The procedures are applicable in many fields, including energy, transportation, environmental studies, health, labor, and marketing.
Book Synopsis Optimality Conditions: Abnormal and Degenerate Problems by : Aram Arutyunov
Download or read book Optimality Conditions: Abnormal and Degenerate Problems written by Aram Arutyunov and published by Springer Science & Business Media. This book was released on 2000-10-31 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to one of the main questions of the theory of extremal problems, namely, to necessary and sufficient extremality conditions. The book consists of four parts. First, the abstract minimization problem with constraints is studied. The next chapter is devoted to one of the most important classes of extremal problems, the optimal control problem. Next, one of the main objects of the calculus of variations is studied, the integral quadratic form. Finally, local properties of smooth nonlinear mappings in a neighborhood of an abnormal point will be discussed. Audience: The book is intended for researchers interested in optimization problems. The book may also be useful for advanced students and postgraduate students.
Book Synopsis Nonsmooth Analysis by : Winfried Schirotzek
Download or read book Nonsmooth Analysis written by Winfried Schirotzek and published by Springer Science & Business Media. This book was released on 2007-05-26 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book treats various concepts of generalized derivatives and subdifferentials in normed spaces, their geometric counterparts and their application to optimization problems. It starts with the subdifferential of convex analysis, passes to corresponding concepts for locally Lipschitz continuous functions and then presents subdifferentials for general lower semicontinuous functions. All basic tools are presented where they are needed: this concerns separation theorems, variational and extremal principles as well as relevant parts of multifunction theory. Each chapter ends with bibliographic notes and exercises.
Book Synopsis Iterative Methods for Linear and Nonlinear Equations by : C. T. Kelley
Download or read book Iterative Methods for Linear and Nonlinear Equations written by C. T. Kelley and published by SIAM. This book was released on 1995-01-01 with total page 179 pages. Available in PDF, EPUB and Kindle. Book excerpt: Linear and nonlinear systems of equations are the basis for many, if not most, of the models of phenomena in science and engineering, and their efficient numerical solution is critical to progress in these areas. This is the first book to be published on nonlinear equations since the mid-1980s. Although it stresses recent developments in this area, such as Newton-Krylov methods, considerable material on linear equations has been incorporated. This book focuses on a small number of methods and treats them in depth. The author provides a complete analysis of the conjugate gradient and generalized minimum residual iterations as well as recent advances including Newton-Krylov methods, incorporation of inexactness and noise into the analysis, new proofs and implementations of Broyden's method, and globalization of inexact Newton methods. Examples, methods, and algorithmic choices are based on applications to infinite dimensional problems such as partial differential equations and integral equations. The analysis and proof techniques are constructed with the infinite dimensional setting in mind and the computational examples and exercises are based on the MATLAB environment.
Book Synopsis Newton-Type Methods for Optimization and Variational Problems by : Alexey F. Izmailov
Download or read book Newton-Type Methods for Optimization and Variational Problems written by Alexey F. Izmailov and published by Springer. This book was released on 2014-07-08 with total page 587 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents comprehensive state-of-the-art theoretical analysis of the fundamental Newtonian and Newtonian-related approaches to solving optimization and variational problems. A central focus is the relationship between the basic Newton scheme for a given problem and algorithms that also enjoy fast local convergence. The authors develop general perturbed Newtonian frameworks that preserve fast convergence and consider specific algorithms as particular cases within those frameworks, i.e., as perturbations of the associated basic Newton iterations. This approach yields a set of tools for the unified treatment of various algorithms, including some not of the Newton type per se. Among the new subjects addressed is the class of degenerate problems. In particular, the phenomenon of attraction of Newton iterates to critical Lagrange multipliers and its consequences as well as stabilized Newton methods for variational problems and stabilized sequential quadratic programming for optimization. This volume will be useful to researchers and graduate students in the fields of optimization and variational analysis.
Book Synopsis Minimization Methods for Non-Differentiable Functions by : N.Z. Shor
Download or read book Minimization Methods for Non-Differentiable Functions written by N.Z. Shor and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 171 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years much attention has been given to the development of auto matic systems of planning, design and control in various branches of the national economy. Quality of decisions is an issue which has come to the forefront, increasing the significance of optimization algorithms in math ematical software packages for al,ltomatic systems of various levels and pur poses. Methods for minimizing functions with discontinuous gradients are gaining in importance and the ~xperts in the computational methods of mathematical programming tend to agree that progress in the development of algorithms for minimizing nonsmooth functions is the key to the con struction of efficient techniques for solving large scale problems. This monograph summarizes to a certain extent fifteen years of the author's work on developing generalized gradient methods for nonsmooth minimization. This work started in the department of economic cybernetics of the Institute of Cybernetics of the Ukrainian Academy of Sciences under the supervision of V.S. Mikhalevich, a member of the Ukrainian Academy of Sciences, in connection with the need for solutions to important, practical problems of optimal planning and design. In Chap. I we describe basic classes of nonsmooth functions that are dif ferentiable almost everywhere, and analyze various ways of defining generalized gradient sets. In Chap. 2 we study in detail various versions of the su bgradient method, show their relation to the methods of Fejer-type approximations and briefly present the fundamentals of e-subgradient methods.