On Efficient Time-Stepping Methods for Nonlinear Second Order Hyperbolic Partial Differential Equations

Download On Efficient Time-Stepping Methods for Nonlinear Second Order Hyperbolic Partial Differential Equations PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 28 pages
Book Rating : 4.:/5 (227 download)

DOWNLOAD NOW!


Book Synopsis On Efficient Time-Stepping Methods for Nonlinear Second Order Hyperbolic Partial Differential Equations by : Richard E. Ewing

Download or read book On Efficient Time-Stepping Methods for Nonlinear Second Order Hyperbolic Partial Differential Equations written by Richard E. Ewing and published by . This book was released on 1979 with total page 28 pages. Available in PDF, EPUB and Kindle. Book excerpt: Techniques useful for efficiently time-stepping Galerkin methods for various types of time-dependent partial differential equations are presented and analyzed. Second-order quasilinear hyperbolic problems with smooth solutions are studied as a simple model problem for illustrating the widely applicable techniques. The procedure involves the use of a preconditioned iterative method for approximately solving the different linear systems of equations arising at each time-step in a discrete-time Galerkin method. Optimal order L2 spatial errors and almost optimal order work estimates are obtained for the second-order hyperbolic equation. (Author).

On Efficient Time-Stepping Methods for Nonlinear Partial Differential Equations

Download On Efficient Time-Stepping Methods for Nonlinear Partial Differential Equations PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 14 pages
Book Rating : 4.:/5 (227 download)

DOWNLOAD NOW!


Book Synopsis On Efficient Time-Stepping Methods for Nonlinear Partial Differential Equations by : Richard E. Ewing

Download or read book On Efficient Time-Stepping Methods for Nonlinear Partial Differential Equations written by Richard E. Ewing and published by . This book was released on 1979 with total page 14 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Partial Differential Equations

Download Partial Differential Equations PDF Online Free

Author :
Publisher : North Holland
ISBN 13 : 9780444506160
Total Pages : 0 pages
Book Rating : 4.5/5 (61 download)

DOWNLOAD NOW!


Book Synopsis Partial Differential Equations by : D. Sloan

Download or read book Partial Differential Equations written by D. Sloan and published by North Holland. This book was released on 2001-07-24 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: /homepage/sac/cam/na2000/index.html7-Volume Set now available at special set price ! Over the second half of the 20th century the subject area loosely referred to as numerical analysis of partial differential equations (PDEs) has undergone unprecedented development. At its practical end, the vigorous growth and steady diversification of the field were stimulated by the demand for accurate and reliable tools for computational modelling in physical sciences and engineering, and by the rapid development of computer hardware and architecture. At the more theoretical end, the analytical insight into the underlying stability and accuracy properties of computational algorithms for PDEs was deepened by building upon recent progress in mathematical analysis and in the theory of PDEs. To embark on a comprehensive review of the field of numerical analysis of partial differential equations within a single volume of this journal would have been an impossible task. Indeed, the 16 contributions included here, by some of the foremost world authorities in the subject, represent only a small sample of the major developments. We hope that these articles will, nevertheless, provide the reader with a stimulating glimpse into this diverse, exciting and important field. The opening paper by Thomée reviews the history of numerical analysis of PDEs, starting with the 1928 paper by Courant, Friedrichs and Lewy on the solution of problems of mathematical physics by means of finite differences. This excellent survey takes the reader through the development of finite differences for elliptic problems from the 1930s, and the intense study of finite differences for general initial value problems during the 1950s and 1960s. The formulation of the concept of stability is explored in the Lax equivalence theorem and the Kreiss matrix lemmas. Reference is made to the introduction of the finite element method by structural engineers, and a description is given of the subsequent development and mathematical analysis of the finite element method with piecewise polynomial approximating functions. The penultimate section of Thomée's survey deals with `other classes of approximation methods', and this covers methods such as collocation methods, spectral methods, finite volume methods and boundary integral methods. The final section is devoted to numerical linear algebra for elliptic problems. The next three papers, by Bialecki and Fairweather, Hesthaven and Gottlieb and Dahmen, describe, respectively, spline collocation methods, spectral methods and wavelet methods. The work by Bialecki and Fairweather is a comprehensive overview of orthogonal spline collocation from its first appearance to the latest mathematical developments and applications. The emphasis throughout is on problems in two space dimensions. The paper by Hesthaven and Gottlieb presents a review of Fourier and Chebyshev pseudospectral methods for the solution of hyperbolic PDEs. Particular emphasis is placed on the treatment of boundaries, stability of time discretisations, treatment of non-smooth solutions and multidomain techniques. The paper gives a clear view of the advances that have been made over the last decade in solving hyperbolic problems by means of spectral methods, but it shows that many critical issues remain open. The paper by Dahmen reviews the recent rapid growth in the use of wavelet methods for PDEs. The author focuses on the use of adaptivity, where significant successes have recently been achieved. He describes the potential weaknesses of wavelet methods as well as the perceived strengths, thus giving a balanced view that should encourage the study of wavelet methods. Aspects of finite element methods and adaptivity are dealt with in the three papers by Cockburn, Rannacher and Suri. The paper by Cockburn is concerned with the development and analysis of discontinuous Galerkin (DG) finite element methods for hyperbolic problems. It reviews the key properties of DG methods for nonlinear hyperbolic conservation laws from a novel viewpoint that stems from the observation that hyperbolic conservation laws are normally arrived at via model reduction, by elimination of dissipation terms. Rannacher's paper is a first-rate survey of duality-based a posteriori error estimation and mesh adaptivity for Galerkin finite element approximations of PDEs. The approach is illustrated for simple examples of linear and nonlinear PDEs, including also an optimal control problem. Several open questions are identified such as the efficient determination of the dual solution, especially in the presence of oscillatory solutions. The paper by Suri is a lucid overview of the relative merits of the hp and p versions of the finite element method over the h version. The work is presented in a non-technical manner by focusing on a class of problems concerned with linear elasticity posed on thin domains. This type of problem is of considerable practical interest and it generates a number of significant theoretical problems. Iterative methods and multigrid techniques are reviewed in a paper by Silvester, Elman, Kay and Wathen, and in three papers by Stüben, Wesseling and Oosterlee and Xu. The paper by Silvester et al. outlines a new class of robust and efficient methods for solving linear algebraic systems that arise in the linearisation and operator splitting of the Navier-Stokes equations. A general preconditioning strategy is described that uses a multigrid V-cycle for the scalar convection-diffusion operator and a multigrid V-cycle for a pressure Poisson operator. This two-stage approach gives rise to a solver that is robust with respect to time-step-variation and for which the convergence rate is independent of the grid. The paper by Stüben gives a detailed overview of algebraic multigrid. This is a hierarchical and matrix-based approach to the solution of large, sparse, unstructured linear systems of equations. It may be applied to yield efficient solvers for elliptic PDEs discretised on unstructured grids. The author shows why this is likely to be an active and exciting area of research for several years in the new millennium. The paper by Wesseling and Oosterlee reviews geometric multigrid methods, with emphasis on applications in computational fluid dynamics (CFD). The paper is not an introduction to multigrid: it is more appropriately described as a refresher paper for practitioners who have some basic knowledge of multigrid methods and CFD. The authors point out that textbook multigrid efficiency cannot yet be achieved for all CFD problems and that the demands of engineering applications are focusing research in interesting new directions. Semi-coarsening, adaptivity and generalisation to unstructured grids are becoming more important. The paper by Xu presents an overview of methods for solving linear algebraic systems based on subspace corrections. The method is motivated by a discussion of the local behaviour of high-frequency components in the solution of an elliptic problem. Of novel interest is the demonstration that the method of subspace corrections is closely related to von Neumann's method of alternating projections. This raises the question as to whether certain error estimates for alternating directions that are available in the literature may be used to derive convergence estimates for multigrid and/or domain decomposition methods. Moving finite element methods and moving mesh methods are presented, respectively, in the papers by Baines and Huang and Russell. The paper by Baines reviews recent advances in Galerkin and least-squares methods for solving first- and second-order PDEs with moving nodes in multidimensions. The methods use unstructured meshes and they minimise the norm of the residual of the PDE over both the computed solution and the nodal positions. The relationship between the moving finite element method and L2 least-squares methods is discussed. The paper also describes moving finite volume and discrete l2 least-squares methods. Huang and Russell review a class of moving mesh algorithms based upon a moving mesh partial differential equation (MMPDE). The authors are leading players in this research area, and the paper is largely a review of their own work in developing viable MMPDEs and efficient solution strategies. The remaining three papers in this special issue are by Budd and Piggott, Ewing and Wang and van der Houwen and Sommeijer. The paper by Budd and Piggott on geometric integration is a survey of adaptive methods and scaling invariance for discretisations of ordinary and partial differential equations. The authors have succeeded in presenting a readable account of material that combines abstract concepts and practical scientific computing. Geometric integration is a new and rapidly growing area which deals with the derivation of numerical methods for differential equations that incorporate qualitative information in their structure. Qualitative features that may be present in PDEs might include symmetries, asymptotics, invariants or orderings and the objective is to take these properties into account in deriving discretisations. The paper by Ewing and Wang gives a brief summary of numerical methods for advection-dominated PDEs. Models arising in porous medium fluid flow are presented to motivate the study of the advection-dominated flows. The numerical methods reviewed are applicable not only to porous medium flow problems but second-order PDEs with dominant hyperbolic behaviour in general. The paper by van der Houwen and Sommeijer deals with approximate factorisation for time-dependent PDEs. The paper begins with some historical notes and it proceeds to present various approximate factorisation techniques. The objective is to show that the linear system arising from linearisation and discretisation of the PDE may be solved more efficiently if the coefficient matrix is replaced by an approximate factorisation based on splitting. The paper presents a number of new stability results obtained by the group at CWI Amsterdam for the resulting time integration methods.

Numerical Methods for Evolutionary Differential Equations

Download Numerical Methods for Evolutionary Differential Equations PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 0898718910
Total Pages : 404 pages
Book Rating : 4.8/5 (987 download)

DOWNLOAD NOW!


Book Synopsis Numerical Methods for Evolutionary Differential Equations by : Uri M. Ascher

Download or read book Numerical Methods for Evolutionary Differential Equations written by Uri M. Ascher and published by SIAM. This book was released on 2008-01-01 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: Methods for the numerical simulation of dynamic mathematical models have been the focus of intensive research for well over 60 years, and the demand for better and more efficient methods has grown as the range of applications has increased. Mathematical models involving evolutionary partial differential equations (PDEs) as well as ordinary differential equations (ODEs) arise in diverse applications such as fluid flow, image processing and computer vision, physics-based animation, mechanical systems, relativity, earth sciences, and mathematical finance. This textbook develops, analyzes, and applies numerical methods for evolutionary, or time-dependent, differential problems. Both PDEs and ODEs are discussed from a unified viewpoint. The author emphasizes finite difference and finite volume methods, specifically their principled derivation, stability, accuracy, efficient implementation, and practical performance in various fields of science and engineering. Smooth and nonsmooth solutions for hyperbolic PDEs, parabolic-type PDEs, and initial value ODEs are treated, and a practical introduction to geometric integration methods is included as well. Audience: suitable for researchers and graduate students from a variety of fields including computer science, applied mathematics, physics, earth and ocean sciences, and various engineering disciplines. Researchers who simulate processes that are modeled by evolutionary differential equations will find material on the principles underlying the appropriate method to use and the pitfalls that accompany each method.

Efficient Runge-Kutta Based Local Time-stepping Methods

Download Efficient Runge-Kutta Based Local Time-stepping Methods PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 104 pages
Book Rating : 4.:/5 (973 download)

DOWNLOAD NOW!


Book Synopsis Efficient Runge-Kutta Based Local Time-stepping Methods by : Alexander Ashbourne

Download or read book Efficient Runge-Kutta Based Local Time-stepping Methods written by Alexander Ashbourne and published by . This book was released on 2016 with total page 104 pages. Available in PDF, EPUB and Kindle. Book excerpt: The method of lines approach to the numerical solution of transient hyperbolic partial differential equations (PDEs) allows us to write the PDE as a system of ordinary differential equations (ODEs) in time. Solving this system of ODEs explicitly requires choosing a stable time step satisfying the Courant-Friedrichs-Lewy (CFL) condition. When a uniform mesh is used, the global CFL number is used to choose the time step and the system is advanced uniformly in time. The need for local time-stepping, i.e., advancing elements by their maximum locally defined time step, occurs when the elements in the mesh differ greatly in size. When global time-stepping is used, the global CFL number and the globally defined time step are defined by the smallest element in the mesh. This leads to inefficiencies as a few small elements impose a restrictive time step on the entire mesh. Local time-stepping mitigates these inefficiencies by advancing elements by their locally defined time step and, hence, reduces the number of function evaluations. In this thesis, we present two local time-stepping algorithms based on a third order Runge-Kutta method and the classical fourth order Runge-Kutta method. We prove these methods keep the order of accuracy of the underlying Runge-Kutta methods in the context of a system of ODEs. We then show how they can be used with the method of lines approach to the numerical solution of PDEs, specifically with the discontinuous Galerkin (DG) spatial discretization. Numerical simulations show we obtain the theoretical $p+1$ rate of convergence of the DG method in both the $L^2$ and maximum norms. We provide evidence that these algorithms are stable through a number of linear and nonlinear examples.

Hyperbolic Partial Differential Equations

Download Hyperbolic Partial Differential Equations PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 1483151352
Total Pages : 269 pages
Book Rating : 4.4/5 (831 download)

DOWNLOAD NOW!


Book Synopsis Hyperbolic Partial Differential Equations by : Matthew Witten

Download or read book Hyperbolic Partial Differential Equations written by Matthew Witten and published by Elsevier. This book was released on 2014-05-23 with total page 269 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hyperbolic Partial Differential Equations III is a refereed journal issue that explores the applications, theory, and/or applied methods related to hyperbolic partial differential equations, or problems arising out of hyperbolic partial differential equations, in any area of research. This journal issue is interested in all types of articles in terms of review, mini-monograph, standard study, or short communication. Some studies presented in this journal include discretization of ideal fluid dynamics in the Eulerian representation; a Riemann problem in gas dynamics with bifurcation; periodic McKendrick equations for age-structured population growth; and logistic models of structured population growth. A number of book reviews are also included. This journal provides an interdisciplinary forum for the presentation of results not included in other particular journals, and thus will be beneficial to those interested in this field of study.

Numerical Methods for Partial Differential Equations

Download Numerical Methods for Partial Differential Equations PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 1483262553
Total Pages : 343 pages
Book Rating : 4.4/5 (832 download)

DOWNLOAD NOW!


Book Synopsis Numerical Methods for Partial Differential Equations by : Seymour V. Parter

Download or read book Numerical Methods for Partial Differential Equations written by Seymour V. Parter and published by Academic Press. This book was released on 2014-05-10 with total page 343 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical Methods for Partial Differential Equations is a collection of papers dealing with techniques and practical solutions to problems concerning continuum mechanics, fluid dynamics, and plasma physics. One paper discusses the important considerations that lead to an efficient nonlinear dynamic finite element analysis using improved analysis techniques. Another paper describes the results obtained from fully discrete methods of higher order in time (order 3 and 4) for second order parabolic initial boundary value problems in which the equations have time dependent (or nonlinear) coefficients. Another paper reviews concepts of ellipticity of finite-difference approximations to general elliptic partial differential systems, with examples utilizing Cauchy-Riemann equations or Navier-Stokes equations. One paper describes fluid-dynamic computing using basic equations, boundary conditions, time dependent gas dynamics, shock waves, stream-function-vorticity methods, and an example on the formation of a spherical vortex. Another paper evaluates a specific problem arising in the study of the equilibrium of plasma confined in a machine of the Tokomak type. The collection is suitable for mathematicians, physicists, and investigators in the field of continuum mechanics, fluid dynamics, plasma physics.

Research in Progress

Download Research in Progress PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 146 pages
Book Rating : 4.3/5 ( download)

DOWNLOAD NOW!


Book Synopsis Research in Progress by :

Download or read book Research in Progress written by and published by . This book was released on with total page 146 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Proper Orthogonal Decomposition Methods for Partial Differential Equations

Download Proper Orthogonal Decomposition Methods for Partial Differential Equations PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0128167998
Total Pages : 280 pages
Book Rating : 4.1/5 (281 download)

DOWNLOAD NOW!


Book Synopsis Proper Orthogonal Decomposition Methods for Partial Differential Equations by : Zhendong Luo

Download or read book Proper Orthogonal Decomposition Methods for Partial Differential Equations written by Zhendong Luo and published by Academic Press. This book was released on 2018-11-26 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proper Orthogonal Decomposition Methods for Partial Differential Equations evaluates the potential applications of POD reduced-order numerical methods in increasing computational efficiency, decreasing calculating load and alleviating the accumulation of truncation error in the computational process. Introduces the foundations of finite-differences, finite-elements and finite-volume-elements. Models of time-dependent PDEs are presented, with detailed numerical procedures, implementation and error analysis. Output numerical data are plotted in graphics and compared using standard traditional methods. These models contain parabolic, hyperbolic and nonlinear systems of PDEs, suitable for the user to learn and adapt methods to their own R&D problems. Explains ways to reduce order for PDEs by means of the POD method so that reduced-order models have few unknowns Helps readers speed up computation and reduce computation load and memory requirements while numerically capturing system characteristics Enables readers to apply and adapt the methods to solve similar problems for PDEs of hyperbolic, parabolic and nonlinear types

Nonlinear Preconditioning Methods for Optimization and Parallel-in-time Methods for 1D Scalar Hyperbolic Partial Differential Equations

Download Nonlinear Preconditioning Methods for Optimization and Parallel-in-time Methods for 1D Scalar Hyperbolic Partial Differential Equations PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 153 pages
Book Rating : 4.:/5 (13 download)

DOWNLOAD NOW!


Book Synopsis Nonlinear Preconditioning Methods for Optimization and Parallel-in-time Methods for 1D Scalar Hyperbolic Partial Differential Equations by : Alexander Howse

Download or read book Nonlinear Preconditioning Methods for Optimization and Parallel-in-time Methods for 1D Scalar Hyperbolic Partial Differential Equations written by Alexander Howse and published by . This book was released on 2017 with total page 153 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis consists of two main parts, part one addressing problems from nonlinear optimization and part two based on solving systems of time dependent differential equations, with both parts describing strategies for accelerating the convergence of iterative methods. In part one we present a nonlinear preconditioning framework for use with nonlinear solvers applied to nonlinear optimization problems, motivated by a generalization of linear left preconditioning and linear preconditioning via a change of variables for minimizing quadratic objective functions. In the optimization context nonlinear preconditioning is used to generate a preconditioner direction that either replaces or supplements the gradient vector throughout the optimization algorithm. This framework is used to discuss previously developed nonlinearly preconditioned nonlinear GMRES and nonlinear conjugate gradients (NCG) algorithms, as well as to develop two new nonlinearly preconditioned quasi-Newton methods based on the limited memory Broyden and limited memory BFGS (L-BFGS) updates. We show how all of the above methods can be implemented in a manifold optimization context, with a particular emphasis on Grassmann matrix manifolds. These methods are compared by solving the optimization problems defining the canonical polyadic (CP) decomposition and Tucker higher order singular value decomposition (HOSVD) for tensors, which are formulated as minimizing approximation error in the Frobenius norm. Both of these decompositions have alternating least squares (ALS) type fixed point iterations derived from their optimization problem definitions. While these ALS type iterations may be slow to converge in practice, they can serve as efficient nonlinear preconditioners for the other optimization methods. As the Tucker HOSVD problem involves orthonormality constraints and lacks unique minimizers, the optimization algorithms are extended from Euclidean space to the manifold setting, where optimization on Grassmann manifolds can resolve both of the issues present in the HOSVD problem. The nonlinearly preconditioned methods are compared to the ALS type preconditioners and non-preconditioned NCG, L-BFGS, and a trust region algorithm using both synthetic and real life tensor data with varying noise level, the real data arising from applications in computer vision and handwritten digit recognition. Numerical results show that the nonlinearly preconditioned methods offer substantial improvements in terms of time-to-solution and robustness over state-of-the-art methods for large tensors, in cases where there are significant amounts of noise in the data, and when high accuracy results are required. In part two we apply a multigrid reduction-in-time (MGRIT) algorithm to scalar one-dimensional hyperbolic partial differential equations. This study is motivated by the observation that sequential time-stepping is an obvious computational bottleneck when attempting to implement highly concurrent algorithms, thus parallel-in-time methods are particularly desirable. Existing parallel-in-time methods have produced significant speedups for parabolic or sufficiently diffusive problems, but can have stability and convergence issues for hyperbolic or advection dominated problems. Being a multigrid method, MGRIT primarily uses temporal coarsening, but spatial coarsening can also be incorporated to produce cheaper multigrid cycles and to ensure stability conditions are satisfied on all levels for explicit time-stepping methods. We compare convergence results for the linear advection and diffusion equations, which illustrate the increased difficulty associated with solving hyperbolic problems via parallel-in-time methods. A particular issue that we address is the fact that uniform factor-two spatial coarsening may negatively affect the convergence rate for MGRIT, resulting in extremely slow convergence when the wave speed is near zero, even if only locally. This is due to a sort of anisotropy in the nodal connections, with small wave speeds resulting in spatial connections being weaker than temporal connections. Through the use of semi-algebraic mode analysis applied to the combined advection-diffusion equation we illustrate how the norm of the iteration matrix, and hence an upper bound on the rate of convergence, varies for different choices of wave speed, diffusivity coefficient, space-time grid spacing, and the inclusion or exclusion of spatial coarsening. The use of waveform relaxation multigrid on intermediate, temporally semi-coarsened grids is identified as a potential remedy for the issues introduced by spatial coarsening, with the downside of creating a more intrusive algorithm that cannot be easily combined with existing time-stepping routines for different problems. As a second, less intrusive, alternative we present an adaptive spatial coarsening strategy that prevents the slowdown observed for small local wave speeds, which is applicable for solving the variable coefficient linear advection equation and the inviscid Burgers equation using first-order explicit or implicit time-stepping methods. Serial numerical results show this method offers significant improvements over uniform coarsening and is convergent for inviscid Burgers' equation with and without shocks. Parallel scaling tests indicate that improvements over serial time-stepping strategies are possible when spatial parallelism alone saturates, and that scalability is robust for oscillatory solutions that change on the scale of the grid spacing.

Time-parallel Methods for Accelerating the Solution of Structural Dynamics Problems

Download Time-parallel Methods for Accelerating the Solution of Structural Dynamics Problems PDF Online Free

Author :
Publisher : Stanford University
ISBN 13 :
Total Pages : 188 pages
Book Rating : 4.F/5 ( download)

DOWNLOAD NOW!


Book Synopsis Time-parallel Methods for Accelerating the Solution of Structural Dynamics Problems by : Julien Remi Cortial

Download or read book Time-parallel Methods for Accelerating the Solution of Structural Dynamics Problems written by Julien Remi Cortial and published by Stanford University. This book was released on 2011 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: The classical approach for solving evolution Partial Differential Equations (PDEs) using a parallel computer consists in first partitioning the spatial domain and assigning each subdomain to a processor to achieve space-parallelism, then advancing the solution sequentially. However, enabling parallelism along the time dimension, despite its intrinsic difficulty, can be of paramount importance to fast computations when space-parallelism is unfeasible, cannot fully exploit a massively parallel machine or when near-real-time prediction is desired. The aforementioned objective can be achieved by applying classical domain decomposition principles to the time axis. The latter is first partitioned into time-slices to be processed independently. Starting with approximate seed information that provides a set of initial conditions, the response is then advanced in parallel in each time-slice using a standard time-stepping integrator. This decomposed solution exhibits discontinuities or jumps at the time-slice boundaries if the initial guess is not accurate. Applying a Newton-like approach to the time-dependent system, a correction function is then computed to improve the accuracy of the seed values and the process is repeated until convergence is reached. Methods based on the above concept have been successfully applied to various problems but none was found to be competitive for even for the simplest of second-order hyperbolic PDEs, a class of equations that covers the field of structural dynamics among others. To overcome this difficulty, a key idea is to improve the sequential propagator used for correcting the seed values, observing that the original evolution problem and the derived corrective one are closely related. The present work first demonstrates how this insight can be brought to fruition in the context of linear oscillators, with numerical examples featuring structural models ranging from academic to more challenging large-scale ones. An extension of this method to nonlinear equations is then developed and its concrete application to geometrically nonlinear transient dynamics is presented. Finally, it is shown how the time-reversibility property that characterizes some of the above problems can be exploited to develop a new framework that provides an increased speed-up factor.

The Large Discretization Step Method for Time-dependent Partial Differential Equations

Download The Large Discretization Step Method for Time-dependent Partial Differential Equations PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 60 pages
Book Rating : 4.:/5 (317 download)

DOWNLOAD NOW!


Book Synopsis The Large Discretization Step Method for Time-dependent Partial Differential Equations by : Institute for Computer Applications in Science and Engineering

Download or read book The Large Discretization Step Method for Time-dependent Partial Differential Equations written by Institute for Computer Applications in Science and Engineering and published by . This book was released on 1995 with total page 60 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Finite Difference Methods for Ordinary and Partial Differential Equations

Download Finite Difference Methods for Ordinary and Partial Differential Equations PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 9780898717839
Total Pages : 356 pages
Book Rating : 4.7/5 (178 download)

DOWNLOAD NOW!


Book Synopsis Finite Difference Methods for Ordinary and Partial Differential Equations by : Randall J. LeVeque

Download or read book Finite Difference Methods for Ordinary and Partial Differential Equations written by Randall J. LeVeque and published by SIAM. This book was released on 2007-01-01 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.

Advanced Numerical Approximation of Nonlinear Hyperbolic Equations

Download Advanced Numerical Approximation of Nonlinear Hyperbolic Equations PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3540498044
Total Pages : 446 pages
Book Rating : 4.5/5 (44 download)

DOWNLOAD NOW!


Book Synopsis Advanced Numerical Approximation of Nonlinear Hyperbolic Equations by : B. Cockburn

Download or read book Advanced Numerical Approximation of Nonlinear Hyperbolic Equations written by B. Cockburn and published by Springer. This book was released on 2006-11-14 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the texts of the four series of lectures presented by B.Cockburn, C.Johnson, C.W. Shu and E.Tadmor at a C.I.M.E. Summer School. It is aimed at providing a comprehensive and up-to-date presentation of numerical methods which are nowadays used to solve nonlinear partial differential equations of hyperbolic type, developing shock discontinuities. The most effective methodologies in the framework of finite elements, finite differences, finite volumes spectral methods and kinetic methods, are addressed, in particular high-order shock capturing techniques, discontinuous Galerkin methods, adaptive techniques based upon a-posteriori error analysis.

Space-Time Methods

Download Space-Time Methods PDF Online Free

Author :
Publisher : Walter de Gruyter GmbH & Co KG
ISBN 13 : 3110548488
Total Pages : 261 pages
Book Rating : 4.1/5 (15 download)

DOWNLOAD NOW!


Book Synopsis Space-Time Methods by : Ulrich Langer

Download or read book Space-Time Methods written by Ulrich Langer and published by Walter de Gruyter GmbH & Co KG. This book was released on 2019-09-23 with total page 261 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume provides an introduction to modern space-time discretization methods such as finite and boundary elements and isogeometric analysis for time-dependent initial-boundary value problems of parabolic and hyperbolic type. Particular focus is given on stable formulations, error estimates, adaptivity in space and time, efficient solution algorithms, parallelization of the solution pipeline, and applications in science and engineering.

Scientific and Technical Aerospace Reports

Download Scientific and Technical Aerospace Reports PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 652 pages
Book Rating : 4.:/5 (319 download)

DOWNLOAD NOW!


Book Synopsis Scientific and Technical Aerospace Reports by :

Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1995 with total page 652 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.

Finite Volume Methods for Hyperbolic Problems

Download Finite Volume Methods for Hyperbolic Problems PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1139434187
Total Pages : 582 pages
Book Rating : 4.1/5 (394 download)

DOWNLOAD NOW!


Book Synopsis Finite Volume Methods for Hyperbolic Problems by : Randall J. LeVeque

Download or read book Finite Volume Methods for Hyperbolic Problems written by Randall J. LeVeque and published by Cambridge University Press. This book was released on 2002-08-26 with total page 582 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, first published in 2002, contains an introduction to hyperbolic partial differential equations and a powerful class of numerical methods for approximating their solution, including both linear problems and nonlinear conservation laws. These equations describe a wide range of wave propagation and transport phenomena arising in nearly every scientific and engineering discipline. Several applications are described in a self-contained manner, along with much of the mathematical theory of hyperbolic problems. High-resolution versions of Godunov's method are developed, in which Riemann problems are solved to determine the local wave structure and limiters are then applied to eliminate numerical oscillations. These methods were originally designed to capture shock waves accurately, but are also useful tools for studying linear wave-propagation problems, particularly in heterogenous material. The methods studied are implemented in the CLAWPACK software package and source code for all the examples presented can be found on the web, along with animations of many of the simulations. This provides an excellent learning environment for understanding wave propagation phenomena and finite volume methods.