Numerical Methods for Physics

Download Numerical Methods for Physics PDF Online Free

Author :
Publisher : Createspace Independent Publishing Platform
ISBN 13 : 9781514136683
Total Pages : 0 pages
Book Rating : 4.1/5 (366 download)

DOWNLOAD NOW!


Book Synopsis Numerical Methods for Physics by : Alejando L. Garcia

Download or read book Numerical Methods for Physics written by Alejando L. Garcia and published by Createspace Independent Publishing Platform. This book was released on 2015-06-06 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers a broad spectrum of the most important, basic numerical and analytical techniques used in physics -including ordinary and partial differential equations, linear algebra, Fourier transforms, integration and probability. Now language-independent. Features attractive new 3-D graphics. Offers new and significantly revised exercises. Replaces FORTRAN listings with C++, with updated versions of the FORTRAN programs now available on-line. Devotes a third of the book to partial differential equations-e.g., Maxwell's equations, the diffusion equation, the wave equation, etc. This numerical analysis book is designed for the programmer with a physics background. Previously published by Prentice Hall / Addison-Wesley

Numerical Methods in Physics with Python

Download Numerical Methods in Physics with Python PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1009303848
Total Pages : 706 pages
Book Rating : 4.0/5 (93 download)

DOWNLOAD NOW!


Book Synopsis Numerical Methods in Physics with Python by : Alex Gezerlis

Download or read book Numerical Methods in Physics with Python written by Alex Gezerlis and published by Cambridge University Press. This book was released on 2023-05-31 with total page 706 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bringing together idiomatic Python programming, foundational numerical methods, and physics applications, this is an ideal standalone textbook for courses on computational physics. All the frequently used numerical methods in physics are explained, including foundational techniques and hidden gems on topics such as linear algebra, differential equations, root-finding, interpolation, and integration. The second edition of this introductory book features several new codes and 140 new problems (many on physics applications), as well as new sections on the singular-value decomposition, derivative-free optimization, Bayesian linear regression, neural networks, and partial differential equations. The last section in each chapter is an in-depth project, tackling physics problems that cannot be solved without the use of a computer. Written primarily for students studying computational physics, this textbook brings the non-specialist quickly up to speed with Python before looking in detail at the numerical methods often used in the subject.

Computational Methods for Physics

Download Computational Methods for Physics PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107067855
Total Pages : 419 pages
Book Rating : 4.1/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Computational Methods for Physics by : Joel Franklin

Download or read book Computational Methods for Physics written by Joel Franklin and published by Cambridge University Press. This book was released on 2013-05-23 with total page 419 pages. Available in PDF, EPUB and Kindle. Book excerpt: There is an increasing need for undergraduate students in physics to have a core set of computational tools. Most problems in physics benefit from numerical methods, and many of them resist analytical solution altogether. This textbook presents numerical techniques for solving familiar physical problems where a complete solution is inaccessible using traditional mathematical methods. The numerical techniques for solving the problems are clearly laid out, with a focus on the logic and applicability of the method. The same problems are revisited multiple times using different numerical techniques, so readers can easily compare the methods. The book features over 250 end-of-chapter exercises. A website hosted by the author features a complete set of programs used to generate the examples and figures, which can be used as a starting point for further investigation. A link to this can be found at www.cambridge.org/9781107034303.

Computational Methods in Physics

Download Computational Methods in Physics PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319786199
Total Pages : 880 pages
Book Rating : 4.3/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Computational Methods in Physics by : Simon Širca

Download or read book Computational Methods in Physics written by Simon Širca and published by Springer. This book was released on 2018-06-21 with total page 880 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended to help advanced undergraduate, graduate, and postdoctoral students in their daily work by offering them a compendium of numerical methods. The choice of methods pays significant attention to error estimates, stability and convergence issues, as well as optimization of program execution speeds. Numerous examples are given throughout the chapters, followed by comprehensive end-of-chapter problems with a more pronounced physics background, while less stress is given to the explanation of individual algorithms. The readers are encouraged to develop a certain amount of skepticism and scrutiny instead of blindly following readily available commercial tools. The second edition has been enriched by a chapter on inverse problems dealing with the solution of integral equations, inverse Sturm-Liouville problems, as well as retrospective and recovery problems for partial differential equations. The revised text now includes an introduction to sparse matrix methods, the solution of matrix equations, and pseudospectra of matrices; it discusses the sparse Fourier, non-uniform Fourier and discrete wavelet transformations, the basics of non-linear regression and the Kolmogorov-Smirnov test; it demonstrates the key concepts in solving stiff differential equations and the asymptotics of Sturm-Liouville eigenvalues and eigenfunctions. Among other updates, it also presents the techniques of state-space reconstruction, methods to calculate the matrix exponential, generate random permutations and compute stable derivatives.

Numerical Methods for Solving Inverse Problems of Mathematical Physics

Download Numerical Methods for Solving Inverse Problems of Mathematical Physics PDF Online Free

Author :
Publisher : Walter de Gruyter
ISBN 13 : 3110205793
Total Pages : 453 pages
Book Rating : 4.1/5 (12 download)

DOWNLOAD NOW!


Book Synopsis Numerical Methods for Solving Inverse Problems of Mathematical Physics by : A. A. Samarskii

Download or read book Numerical Methods for Solving Inverse Problems of Mathematical Physics written by A. A. Samarskii and published by Walter de Gruyter. This book was released on 2008-08-27 with total page 453 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main classes of inverse problems for equations of mathematical physics and their numerical solution methods are considered in this book which is intended for graduate students and experts in applied mathematics, computational mathematics, and mathematical modelling.

Introduction to Numerical Programming

Download Introduction to Numerical Programming PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1466569670
Total Pages : 676 pages
Book Rating : 4.4/5 (665 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Numerical Programming by : Titus A. Beu

Download or read book Introduction to Numerical Programming written by Titus A. Beu and published by CRC Press. This book was released on 2014-09-03 with total page 676 pages. Available in PDF, EPUB and Kindle. Book excerpt: Makes Numerical Programming More Accessible to a Wider Audience Bearing in mind the evolution of modern programming, most specifically emergent programming languages that reflect modern practice, Numerical Programming: A Practical Guide for Scientists and Engineers Using Python and C/C++ utilizes the author’s many years of practical research and teaching experience to offer a systematic approach to relevant programming concepts. Adopting a practical, broad appeal, this user-friendly book offers guidance to anyone interested in using numerical programming to solve science and engineering problems. Emphasizing methods generally used in physics and engineering—from elementary methods to complex algorithms—it gradually incorporates algorithmic elements with increasing complexity. Develop a Combination of Theoretical Knowledge, Efficient Analysis Skills, and Code Design Know-How The book encourages algorithmic thinking, which is essential to numerical analysis. Establishing the fundamental numerical methods, application numerical behavior and graphical output needed to foster algorithmic reasoning, coding dexterity, and a scientific programming style, it enables readers to successfully navigate relevant algorithms, understand coding design, and develop efficient programming skills. The book incorporates real code, and includes examples and problem sets to assist in hands-on learning. Begins with an overview on approximate numbers and programming in Python and C/C++, followed by discussion of basic sorting and indexing methods, as well as portable graphic functionality Contains methods for function evaluation, solving algebraic and transcendental equations, systems of linear algebraic equations, ordinary differential equations, and eigenvalue problems Addresses approximation of tabulated functions, regression, integration of one- and multi-dimensional functions by classical and Gaussian quadratures, Monte Carlo integration techniques, generation of random variables, discretization methods for ordinary and partial differential equations, and stability analysis This text introduces platform-independent numerical programming using Python and C/C++, and appeals to advanced undergraduate and graduate students in natural sciences and engineering, researchers involved in scientific computing, and engineers carrying out applicative calculations.

Numerical Methods for Nonlinear Variational Problems

Download Numerical Methods for Nonlinear Variational Problems PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3662126133
Total Pages : 506 pages
Book Rating : 4.6/5 (621 download)

DOWNLOAD NOW!


Book Synopsis Numerical Methods for Nonlinear Variational Problems by : Roland Glowinski

Download or read book Numerical Methods for Nonlinear Variational Problems written by Roland Glowinski and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the mathematical background and reviews the techniques for solving problems, including those that require large computations such as transonic flows for compressible fluids and the Navier-Stokes equations for incompressible viscous fluids. Finite element approximations and non-linear relaxation, and nonlinear least square methods are all covered in detail, as are many applications. This volume is a classic in a long-awaited softcover re-edition.

Numerical Methods for Metamaterial Design

Download Numerical Methods for Metamaterial Design PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9400766645
Total Pages : 226 pages
Book Rating : 4.4/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Numerical Methods for Metamaterial Design by : Kenneth Diest

Download or read book Numerical Methods for Metamaterial Design written by Kenneth Diest and published by Springer Science & Business Media. This book was released on 2013-08-13 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes a relatively new approach for the design of electromagnetic metamaterials. Numerical optimization routines are combined with electromagnetic simulations to tailor the broadband optical properties of a metamaterial to have predetermined responses at predetermined wavelengths. After a review of both the major efforts within the field of metamaterials and the field of mathematical optimization, chapters covering both gradient-based and derivative-free design methods are considered. Selected topics including surrogate-base optimization, adaptive mesh search, and genetic algorithms are shown to be effective, gradient-free optimization strategies. Additionally, new techniques for representing dielectric distributions in two dimensions, including level sets, are demonstrated as effective methods for gradient-based optimization. Each chapter begins with a rigorous review of the optimization strategy used, and is followed by numerous examples that combine the strategy with either electromagnetic simulations or analytical solutions of the scattering problem. Throughout the text, we address the strengths and limitations of each method, as well as which numerical methods are best suited for different types of metamaterial designs. This book is intended to provide a detailed enough treatment of the mathematical methods used, along with sufficient examples and additional references, that senior level undergraduates or graduate students who are new to the fields of plasmonics, metamaterials, or optimization methods; have an understanding of which approaches are best-suited for their work and how to implement the methods themselves.

Fundamentals of Engineering Numerical Analysis

Download Fundamentals of Engineering Numerical Analysis PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1139489550
Total Pages : pages
Book Rating : 4.1/5 (394 download)

DOWNLOAD NOW!


Book Synopsis Fundamentals of Engineering Numerical Analysis by : Parviz Moin

Download or read book Fundamentals of Engineering Numerical Analysis written by Parviz Moin and published by Cambridge University Press. This book was released on 2010-08-23 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the original publication of this book, available computer power has increased greatly. Today, scientific computing is playing an ever more prominent role as a tool in scientific discovery and engineering analysis. In this second edition, the key addition is an introduction to the finite element method. This is a widely used technique for solving partial differential equations (PDEs) in complex domains. This text introduces numerical methods and shows how to develop, analyse, and use them. Complete MATLAB programs for all the worked examples are now available at www.cambridge.org/Moin, and more than 30 exercises have been added. This thorough and practical book is intended as a first course in numerical analysis, primarily for new graduate students in engineering and physical science. Along with mastering the fundamentals of numerical methods, students will learn to write their own computer programs using standard numerical methods.

Numerical Methods in Astrophysics

Download Numerical Methods in Astrophysics PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 9780750308830
Total Pages : 360 pages
Book Rating : 4.3/5 (88 download)

DOWNLOAD NOW!


Book Synopsis Numerical Methods in Astrophysics by : Peter Bodenheimer

Download or read book Numerical Methods in Astrophysics written by Peter Bodenheimer and published by CRC Press. This book was released on 2006-12-13 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical Methods in Astrophysics: An Introduction outlines various fundamental numerical methods that can solve gravitational dynamics, hydrodynamics, and radiation transport equations. This resource indicates which methods are most suitable for particular problems, demonstrates what the accuracy requirements are in numerical simulations, and suggests ways to test for and reduce the inevitable negative effects. After an introduction to the basic equations and derivations, the book focuses on practical applications of the numerical methods. It explores hydrodynamic problems in one dimension, N-body particle dynamics, smoothed particle hydrodynamics, and stellar structure and evolution. The authors also examine advanced techniques in grid-based hydrodynamics, evaluate the methods for calculating the gravitational forces in an astrophysical system, and discuss specific problems in grid-based methods for radiation transfer. The book incorporates brief user instructions and a CD-ROM of the numerical codes, allowing readers to experiment with the codes to suit their own needs. With numerous examples and sample problems that cover a wide range of current research topics, this highly practical guide illustrates how to solve key astrophysics problems, providing a clear introduction for graduate and undergraduate students as well as researchers and professionals.

Numerical Methods for Physics

Download Numerical Methods for Physics PDF Online Free

Author :
Publisher : Addison-Wesley Professional
ISBN 13 :
Total Pages : 440 pages
Book Rating : 4.:/5 (318 download)

DOWNLOAD NOW!


Book Synopsis Numerical Methods for Physics by : Alejandro L. Garcia

Download or read book Numerical Methods for Physics written by Alejandro L. Garcia and published by Addison-Wesley Professional. This book was released on 2000 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: The second edition of this book presents discussion of the main programmes within the main text as language-independent, as opposed to the MATLAB-specific first edition. FORTRAN listings are replaced by C++.

Strongly Correlated Systems

Download Strongly Correlated Systems PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642351069
Total Pages : 350 pages
Book Rating : 4.6/5 (423 download)

DOWNLOAD NOW!


Book Synopsis Strongly Correlated Systems by : Adolfo Avella

Download or read book Strongly Correlated Systems written by Adolfo Avella and published by Springer Science & Business Media. This book was released on 2013-04-05 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents, for the very first time, an exhaustive collection of those modern numerical methods specifically tailored for the analysis of Strongly Correlated Systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and material science, belong to this class of systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognized main contributors. The exposition has a clear pedagogical cut and fully reports on the most relevant case study where the specific technique showed to be very successful in describing and enlightening the puzzling physics of a particular strongly correlated system. The book is intended for advanced graduate students and post-docs in the field as textbook and/or main reference, but also for other researchers in the field who appreciate consulting a single, but comprehensive, source or wishes to get acquainted, in a as painless as possible way, with the working details of a specific technique.

An Introduction to Computational Physics

Download An Introduction to Computational Physics PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521825696
Total Pages : 414 pages
Book Rating : 4.8/5 (256 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Computational Physics by : Tao Pang

Download or read book An Introduction to Computational Physics written by Tao Pang and published by Cambridge University Press. This book was released on 2006-01-19 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: This advanced textbook provides an introduction to the basic methods of computational physics.

Numerical Methods in Photonics

Download Numerical Methods in Photonics PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1466563893
Total Pages : 362 pages
Book Rating : 4.4/5 (665 download)

DOWNLOAD NOW!


Book Synopsis Numerical Methods in Photonics by : Andrei V. Lavrinenko

Download or read book Numerical Methods in Photonics written by Andrei V. Lavrinenko and published by CRC Press. This book was released on 2018-09-03 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: Simulation and modeling using numerical methods is one of the key instruments in any scientific work. In the field of photonics, a wide range of numerical methods are used for studying both fundamental optics and applications such as design, development, and optimization of photonic components. Modeling is key for developing improved photonic devices and reducing development time and cost. Choosing the appropriate computational method for a photonics modeling problem requires a clear understanding of the pros and cons of the available numerical methods. Numerical Methods in Photonics presents six of the most frequently used methods: FDTD, FDFD, 1+1D nonlinear propagation, modal method, Green’s function, and FEM. After an introductory chapter outlining the basics of Maxwell’s equations, the book includes self-contained chapters that focus on each of the methods. Each method is accompanied by a review of the mathematical principles in which it is based, along with sample scripts, illustrative examples of characteristic problem solving, and exercises. MATLAB® is used throughout the text. This book provides a solid basis to practice writing your own codes. The theoretical formulation is complemented by sets of exercises, which allow you to grasp the essence of the modeling tools.

Numerical Methods in Computational Electrodynamics

Download Numerical Methods in Computational Electrodynamics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642568025
Total Pages : 387 pages
Book Rating : 4.6/5 (425 download)

DOWNLOAD NOW!


Book Synopsis Numerical Methods in Computational Electrodynamics by : Ursula van Rienen

Download or read book Numerical Methods in Computational Electrodynamics written by Ursula van Rienen and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 387 pages. Available in PDF, EPUB and Kindle. Book excerpt: treated in more detail. They are just specimen of larger classes of schemes. Es sentially, we have to distinguish between semi-analytical methods, discretiza tion methods, and lumped circuit models. The semi-analytical methods and the discretization methods start directly from Maxwell's equations. Semi-analytical methods are concentrated on the analytical level: They use a computer only to evaluate expressions and to solve resulting linear algebraic problems. The best known semi-analytical methods are the mode matching method, which is described in subsection 2. 1, the method of integral equations, and the method of moments. In the method of integral equations, the given boundary value problem is transformed into an integral equation with the aid of a suitable Greens' function. In the method of moments, which includes the mode matching method as a special case, the solution function is represented by a linear combination of appropriately weighted basis func tions. The treatment of complex geometrical structures is very difficult for these methods or only possible after geometric simplifications: In the method of integral equations, the Greens function has to satisfy the boundary condi tions. In the mode matching method, it must be possible to decompose the domain into subdomains in which the problem can be solved analytically, thus allowing to find the basis functions. Nevertheless, there are some ap plications for which the semi-analytic methods are the best suited solution methods. For example, an application from accelerator physics used the mode matching technique (see subsection 5. 4).

Numerical Methods for Diffusion Phenomena in Building Physics

Download Numerical Methods for Diffusion Phenomena in Building Physics PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030315746
Total Pages : 253 pages
Book Rating : 4.0/5 (33 download)

DOWNLOAD NOW!


Book Synopsis Numerical Methods for Diffusion Phenomena in Building Physics by : Nathan Mendes

Download or read book Numerical Methods for Diffusion Phenomena in Building Physics written by Nathan Mendes and published by Springer Nature. This book was released on 2019-11-29 with total page 253 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the second edition of Numerical methods for diffusion phenomena in building physics: a practical introduction originally published by PUCPRESS (2016). It intends to stimulate research in simulation of diffusion problems in building physics, by providing an overview of mathematical models and numerical techniques such as the finite difference and finite-element methods traditionally used in building simulation tools. Nonconventional methods such as reduced order models, boundary integral approaches and spectral methods are presented, which might be considered in the next generation of building-energy-simulation tools. In this reviewed edition, an innovative way to simulate energy and hydrothermal performance are presented, bringing some light on innovative approaches in the field.

Numerical Methods that Work

Download Numerical Methods that Work PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 147045727X
Total Pages : 549 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Numerical Methods that Work by : Forman S. Acton

Download or read book Numerical Methods that Work written by Forman S. Acton and published by American Mathematical Soc.. This book was released on 2020-07-31 with total page 549 pages. Available in PDF, EPUB and Kindle. Book excerpt: