An Introduction to Noncommutative Differential Geometry and Its Physical Applications

Download An Introduction to Noncommutative Differential Geometry and Its Physical Applications PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 0521659914
Total Pages : 381 pages
Book Rating : 4.5/5 (216 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Noncommutative Differential Geometry and Its Physical Applications by : J. Madore

Download or read book An Introduction to Noncommutative Differential Geometry and Its Physical Applications written by J. Madore and published by Cambridge University Press. This book was released on 1999-06-24 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: A thoroughly revised introduction to non-commutative geometry.

An Introduction to Noncommutative Differential Geometry and Its Physical Applications

Download An Introduction to Noncommutative Differential Geometry and Its Physical Applications PDF Online Free

Author :
Publisher :
ISBN 13 : 9781107367692
Total Pages : 371 pages
Book Rating : 4.3/5 (676 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Noncommutative Differential Geometry and Its Physical Applications by : J. Madore

Download or read book An Introduction to Noncommutative Differential Geometry and Its Physical Applications written by J. Madore and published by . This book was released on 1999 with total page 371 pages. Available in PDF, EPUB and Kindle. Book excerpt: A thoroughly revised introduction to non-commutative geometry.

Noncommutative Geometry

Download Noncommutative Geometry PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3540397027
Total Pages : 364 pages
Book Rating : 4.5/5 (43 download)

DOWNLOAD NOW!


Book Synopsis Noncommutative Geometry by : Alain Connes

Download or read book Noncommutative Geometry written by Alain Connes and published by Springer. This book was released on 2003-12-15 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: Noncommutative Geometry is one of the most deep and vital research subjects of present-day Mathematics. Its development, mainly due to Alain Connes, is providing an increasing number of applications and deeper insights for instance in Foliations, K-Theory, Index Theory, Number Theory but also in Quantum Physics of elementary particles. The purpose of the Summer School in Martina Franca was to offer a fresh invitation to the subject and closely related topics; the contributions in this volume include the four main lectures, cover advanced developments and are delivered by prominent specialists.

Analysis And Mathematical Physics

Download Analysis And Mathematical Physics PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 1786341018
Total Pages : 246 pages
Book Rating : 4.7/5 (863 download)

DOWNLOAD NOW!


Book Synopsis Analysis And Mathematical Physics by : Shaun Bullett

Download or read book Analysis And Mathematical Physics written by Shaun Bullett and published by World Scientific. This book was released on 2016-12-22 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a concise reference book on analysis and mathematical physics, leading readers from a foundation to advanced level understanding of the topic. This is the perfect text for graduate or PhD mathematical-science students looking for support in topics such as distributions, Fourier transforms and microlocal analysis, C* Algebras, value distribution of meromorphic functions, noncommutative differential geometry, differential geometry and mathematical physics, mathematical problems of general relativity, and special functions of mathematical physics.Analysis and Mathematical Physics is the sixth volume of the LTCC Advanced Mathematics Series. This series is the first to provide advanced introductions to mathematical science topics to advanced students of mathematics. Edited by the three joint heads of the London Taught Course Centre for PhD Students in the Mathematical Sciences (LTCC), each book supports readers in broadening their mathematical knowledge outside of their immediate research disciplines while also covering specialized key areas.

Noncommutative Differential Geometry and Its Applications to Physics

Download Noncommutative Differential Geometry and Its Applications to Physics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9401007047
Total Pages : 310 pages
Book Rating : 4.4/5 (1 download)

DOWNLOAD NOW!


Book Synopsis Noncommutative Differential Geometry and Its Applications to Physics by : Yoshiaki Maeda

Download or read book Noncommutative Differential Geometry and Its Applications to Physics written by Yoshiaki Maeda and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: Noncommutative differential geometry is a new approach to classical geometry. It was originally used by Fields Medalist A. Connes in the theory of foliations, where it led to striking extensions of Atiyah-Singer index theory. It also may be applicable to hitherto unsolved geometric phenomena and physical experiments. However, noncommutative differential geometry was not well understood even among mathematicians. Therefore, an international symposium on commutative differential geometry and its applications to physics was held in Japan, in July 1999. Topics covered included: deformation problems, Poisson groupoids, operad theory, quantization problems, and D-branes. The meeting was attended by both mathematicians and physicists, which resulted in interesting discussions. This volume contains the refereed proceedings of this symposium. Providing a state of the art overview of research in these topics, this book is suitable as a source book for a seminar in noncommutative geometry and physics.

Noncommutative Geometry and Particle Physics

Download Noncommutative Geometry and Particle Physics PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9401791627
Total Pages : 246 pages
Book Rating : 4.4/5 (17 download)

DOWNLOAD NOW!


Book Synopsis Noncommutative Geometry and Particle Physics by : Walter D. van Suijlekom

Download or read book Noncommutative Geometry and Particle Physics written by Walter D. van Suijlekom and published by Springer. This book was released on 2014-07-21 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to noncommutative geometry and presents a number of its recent applications to particle physics. It is intended for graduate students in mathematics/theoretical physics who are new to the field of noncommutative geometry, as well as for researchers in mathematics/theoretical physics with an interest in the physical applications of noncommutative geometry. In the first part, we introduce the main concepts and techniques by studying finite noncommutative spaces, providing a “light” approach to noncommutative geometry. We then proceed with the general framework by defining and analyzing noncommutative spin manifolds and deriving some main results on them, such as the local index formula. In the second part, we show how noncommutative spin manifolds naturally give rise to gauge theories, applying this principle to specific examples. We subsequently geometrically derive abelian and non-abelian Yang-Mills gauge theories, and eventually the full Standard Model of particle physics, and conclude by explaining how noncommutative geometry might indicate how to proceed beyond the Standard Model.

Differential Geometry For Physicists

Download Differential Geometry For Physicists PDF Online Free

Author :
Publisher : World Scientific Publishing Company
ISBN 13 : 9813105097
Total Pages : 561 pages
Book Rating : 4.8/5 (131 download)

DOWNLOAD NOW!


Book Synopsis Differential Geometry For Physicists by : Bo-yu Hou

Download or read book Differential Geometry For Physicists written by Bo-yu Hou and published by World Scientific Publishing Company. This book was released on 1997-10-31 with total page 561 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is divided into fourteen chapters, with 18 appendices as introduction to prerequisite topological and algebraic knowledge, etc. The first seven chapters focus on local analysis. This part can be used as a fundamental textbook for graduate students of theoretical physics. Chapters 8-10 discuss geometry on fibre bundles, which facilitates further reference for researchers. The last four chapters deal with the Atiyah-Singer index theorem, its generalization and its application, quantum anomaly, cohomology field theory and noncommutative geometry, giving the reader a glimpse of the frontier of current research in theoretical physics.

Noncommutative Differential Geometry and Its Applications to Physics

Download Noncommutative Differential Geometry and Its Applications to Physics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9780792369301
Total Pages : 328 pages
Book Rating : 4.3/5 (693 download)

DOWNLOAD NOW!


Book Synopsis Noncommutative Differential Geometry and Its Applications to Physics by : Yoshiaki Maeda

Download or read book Noncommutative Differential Geometry and Its Applications to Physics written by Yoshiaki Maeda and published by Springer Science & Business Media. This book was released on 2001-03-31 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: Noncommutative differential geometry is a new approach to classical geometry. It was originally used by Fields Medalist A. Connes in the theory of foliations, where it led to striking extensions of Atiyah-Singer index theory. It also may be applicable to hitherto unsolved geometric phenomena and physical experiments. However, noncommutative differential geometry was not well understood even among mathematicians. Therefore, an international symposium on commutative differential geometry and its applications to physics was held in Japan, in July 1999. Topics covered included: deformation problems, Poisson groupoids, operad theory, quantization problems, and D-branes. The meeting was attended by both mathematicians and physicists, which resulted in interesting discussions. This volume contains the refereed proceedings of this symposium. Providing a state of the art overview of research in these topics, this book is suitable as a source book for a seminar in noncommutative geometry and physics.

Noncommutative Geometry, Quantum Fields and Motives

Download Noncommutative Geometry, Quantum Fields and Motives PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470450453
Total Pages : 810 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Noncommutative Geometry, Quantum Fields and Motives by : Alain Connes

Download or read book Noncommutative Geometry, Quantum Fields and Motives written by Alain Connes and published by American Mathematical Soc.. This book was released on 2019-03-13 with total page 810 pages. Available in PDF, EPUB and Kindle. Book excerpt: The unifying theme of this book is the interplay among noncommutative geometry, physics, and number theory. The two main objects of investigation are spaces where both the noncommutative and the motivic aspects come to play a role: space-time, where the guiding principle is the problem of developing a quantum theory of gravity, and the space of primes, where one can regard the Riemann Hypothesis as a long-standing problem motivating the development of new geometric tools. The book stresses the relevance of noncommutative geometry in dealing with these two spaces. The first part of the book deals with quantum field theory and the geometric structure of renormalization as a Riemann-Hilbert correspondence. It also presents a model of elementary particle physics based on noncommutative geometry. The main result is a complete derivation of the full Standard Model Lagrangian from a very simple mathematical input. Other topics covered in the first part of the book are a noncommutative geometry model of dimensional regularization and its role in anomaly computations, and a brief introduction to motives and their conjectural relation to quantum field theory. The second part of the book gives an interpretation of the Weil explicit formula as a trace formula and a spectral realization of the zeros of the Riemann zeta function. This is based on the noncommutative geometry of the adèle class space, which is also described as the space of commensurability classes of Q-lattices, and is dual to a noncommutative motive (endomotive) whose cyclic homology provides a general setting for spectral realizations of zeros of L-functions. The quantum statistical mechanics of the space of Q-lattices, in one and two dimensions, exhibits spontaneous symmetry breaking. In the low-temperature regime, the equilibrium states of the corresponding systems are related to points of classical moduli spaces and the symmetries to the class field theory of the field of rational numbers and of imaginary quadratic fields, as well as to the automorphisms of the field of modular functions. The book ends with a set of analogies between the noncommutative geometries underlying the mathematical formulation of the Standard Model minimally coupled to gravity and the moduli spaces of Q-lattices used in the study of the zeta function.

Elements of Noncommutative Geometry

Download Elements of Noncommutative Geometry PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461200059
Total Pages : 692 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Elements of Noncommutative Geometry by : Jose M. Gracia-Bondia

Download or read book Elements of Noncommutative Geometry written by Jose M. Gracia-Bondia and published by Springer Science & Business Media. This book was released on 2013-11-27 with total page 692 pages. Available in PDF, EPUB and Kindle. Book excerpt:

An Invitation To Noncommutative Geometry

Download An Invitation To Noncommutative Geometry PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9814475629
Total Pages : 515 pages
Book Rating : 4.8/5 (144 download)

DOWNLOAD NOW!


Book Synopsis An Invitation To Noncommutative Geometry by : Matilde Marcolli

Download or read book An Invitation To Noncommutative Geometry written by Matilde Marcolli and published by World Scientific. This book was released on 2008-02-11 with total page 515 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first existing volume that collects lectures on this important and fast developing subject in mathematics. The lectures are given by leading experts in the field and the range of topics is kept as broad as possible by including both the algebraic and the differential aspects of noncommutative geometry as well as recent applications to theoretical physics and number theory.

Advances in Noncommutative Geometry

Download Advances in Noncommutative Geometry PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030295974
Total Pages : 753 pages
Book Rating : 4.0/5 (32 download)

DOWNLOAD NOW!


Book Synopsis Advances in Noncommutative Geometry by : Ali Chamseddine

Download or read book Advances in Noncommutative Geometry written by Ali Chamseddine and published by Springer Nature. This book was released on 2020-01-13 with total page 753 pages. Available in PDF, EPUB and Kindle. Book excerpt: This authoritative volume in honor of Alain Connes, the foremost architect of Noncommutative Geometry, presents the state-of-the art in the subject. The book features an amalgam of invited survey and research papers that will no doubt be accessed, read, and referred to, for several decades to come. The pertinence and potency of new concepts and methods are concretely illustrated in each contribution. Much of the content is a direct outgrowth of the Noncommutative Geometry conference, held March 23–April 7, 2017, in Shanghai, China. The conference covered the latest research and future areas of potential exploration surrounding topology and physics, number theory, as well as index theory and its ramifications in geometry.

Quantum Riemannian Geometry

Download Quantum Riemannian Geometry PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030302946
Total Pages : 826 pages
Book Rating : 4.0/5 (33 download)

DOWNLOAD NOW!


Book Synopsis Quantum Riemannian Geometry by : Edwin J. Beggs

Download or read book Quantum Riemannian Geometry written by Edwin J. Beggs and published by Springer Nature. This book was released on 2020-01-31 with total page 826 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive account of a modern generalisation of differential geometry in which coordinates need not commute. This requires a reinvention of differential geometry that refers only to the coordinate algebra, now possibly noncommutative, rather than to actual points. Such a theory is needed for the geometry of Hopf algebras or quantum groups, which provide key examples, as well as in physics to model quantum gravity effects in the form of quantum spacetime. The mathematical formalism can be applied to any algebra and includes graph geometry and a Lie theory of finite groups. Even the algebra of 2 x 2 matrices turns out to admit a rich moduli of quantum Riemannian geometries. The approach taken is a `bottom up’ one in which the different layers of geometry are built up in succession, starting from differential forms and proceeding up to the notion of a quantum `Levi-Civita’ bimodule connection, geometric Laplacians and, in some cases, Dirac operators. The book also covers elements of Connes’ approach to the subject coming from cyclic cohomology and spectral triples. Other topics include various other cohomology theories, holomorphic structures and noncommutative D-modules. A unique feature of the book is its constructive approach and its wealth of examples drawn from a large body of literature in mathematical physics, now put on a firm algebraic footing. Including exercises with solutions, it can be used as a textbook for advanced courses as well as a reference for researchers.

An Introduction to Noncommutative Geometry

Download An Introduction to Noncommutative Geometry PDF Online Free

Author :
Publisher : European Mathematical Society
ISBN 13 : 9783037190241
Total Pages : 134 pages
Book Rating : 4.1/5 (92 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Noncommutative Geometry by : Joseph C. Várilly

Download or read book An Introduction to Noncommutative Geometry written by Joseph C. Várilly and published by European Mathematical Society. This book was released on 2006 with total page 134 pages. Available in PDF, EPUB and Kindle. Book excerpt: Noncommutative geometry, inspired by quantum physics, describes singular spaces by their noncommutative coordinate algebras and metric structures by Dirac-like operators. Such metric geometries are described mathematically by Connes' theory of spectral triples. These lectures, delivered at an EMS Summer School on noncommutative geometry and its applications, provide an overview of spectral triples based on examples. This introduction is aimed at graduate students of both mathematics and theoretical physics. It deals with Dirac operators on spin manifolds, noncommutative tori, Moyal quantization and tangent groupoids, action functionals, and isospectral deformations. The structural framework is the concept of a noncommutative spin geometry; the conditions on spectral triples which determine this concept are developed in detail. The emphasis throughout is on gaining understanding by computing the details of specific examples. The book provides a middle ground between a comprehensive text and a narrowly focused research monograph. It is intended for self-study, enabling the reader to gain access to the essentials of noncommutative geometry. New features since the original course are an expanded bibliography and a survey of more recent examples and applications of spectral triples.

An Introduction to Noncommutative Spaces and Their Geometries

Download An Introduction to Noncommutative Spaces and Their Geometries PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 354014949X
Total Pages : 216 pages
Book Rating : 4.5/5 (41 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Noncommutative Spaces and Their Geometries by : Giovanni Landi

Download or read book An Introduction to Noncommutative Spaces and Their Geometries written by Giovanni Landi and published by Springer Science & Business Media. This book was released on 2003-07-01 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: These lecture notes are an introduction to several ideas and applications of noncommutative geometry. It starts with a not necessarily commutative but associative algebra which is thought of as the algebra of functions on some 'virtual noncommutative space'. Attention is switched from spaces, which in general do not even exist, to algebras of functions. In these notes, particular emphasis is put on seeing noncommutative spaces as concrete spaces, namely as a collection of points with a topology. The necessary mathematical tools are presented in a systematic and accessible way and include among other things, C'*-algebras, module theory and K-theory, spectral calculus, forms and connection theory. Application to Yang--Mills, fermionic, and gravity models are described. Also the spectral action and the related invariance under automorphism of the algebra is illustrated. Some recent work on noncommutative lattices is presented. These lattices arose as topologically nontrivial approximations to 'contuinuum' topological spaces. They have been used to construct quantum-mechanical and field-theory models, alternative models to lattice gauge theory, with nontrivial topological content. This book will be essential to physicists and mathematicians with an interest in noncommutative geometry and its uses in physics.

Geometry and Complexity Theory

Download Geometry and Complexity Theory PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 110819141X
Total Pages : 353 pages
Book Rating : 4.1/5 (81 download)

DOWNLOAD NOW!


Book Synopsis Geometry and Complexity Theory by : J. M. Landsberg

Download or read book Geometry and Complexity Theory written by J. M. Landsberg and published by Cambridge University Press. This book was released on 2017-09-28 with total page 353 pages. Available in PDF, EPUB and Kindle. Book excerpt: Two central problems in computer science are P vs NP and the complexity of matrix multiplication. The first is also a leading candidate for the greatest unsolved problem in mathematics. The second is of enormous practical and theoretical importance. Algebraic geometry and representation theory provide fertile ground for advancing work on these problems and others in complexity. This introduction to algebraic complexity theory for graduate students and researchers in computer science and mathematics features concrete examples that demonstrate the application of geometric techniques to real world problems. Written by a noted expert in the field, it offers numerous open questions to motivate future research. Complexity theory has rejuvenated classical geometric questions and brought different areas of mathematics together in new ways. This book will show the beautiful, interesting, and important questions that have arisen as a result.

Noncommutative Algebraic Geometry and Representations of Quantized Algebras

Download Noncommutative Algebraic Geometry and Representations of Quantized Algebras PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9401584303
Total Pages : 333 pages
Book Rating : 4.4/5 (15 download)

DOWNLOAD NOW!


Book Synopsis Noncommutative Algebraic Geometry and Representations of Quantized Algebras by : A. Rosenberg

Download or read book Noncommutative Algebraic Geometry and Representations of Quantized Algebras written by A. Rosenberg and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 333 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is based on lectures delivered at Harvard in the Spring of 1991 and at the University of Utah during the academic year 1992-93. Formally, the book assumes only general algebraic knowledge (rings, modules, groups, Lie algebras, functors etc.). It is helpful, however, to know some basics of algebraic geometry and representation theory. Each chapter begins with its own introduction, and most sections even have a short overview. The purpose of what follows is to explain the spirit of the book and how different parts are linked together without entering into details. The point of departure is the notion of the left spectrum of an associative ring, and the first natural steps of general theory of noncommutative affine, quasi-affine, and projective schemes. This material is presented in Chapter I. Further developments originated from the requirements of several important examples I tried to understand, to begin with the first Weyl algebra and the quantum plane. The book reflects these developments as I worked them out in reallife and in my lectures. In Chapter 11, we study the left spectrum and irreducible representations of a whole lot of rings which are of interest for modern mathematical physics. The dasses of rings we consider indude as special cases: quantum plane, algebra of q-differential operators, (quantum) Heisenberg and Weyl algebras, (quantum) enveloping algebra ofthe Lie algebra sl(2) , coordinate algebra of the quantum group SL(2), the twisted SL(2) of Woronowicz, so called dispin algebra and many others.