Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering

Download Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering PDF Online Free

Author :
Publisher : Marcel Alencar
ISBN 13 : 0262112124
Total Pages : 581 pages
Book Rating : 4.2/5 (621 download)

DOWNLOAD NOW!


Book Synopsis Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering by : Nikola K. Kasabov

Download or read book Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering written by Nikola K. Kasabov and published by Marcel Alencar. This book was released on 1996 with total page 581 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combines the study of neural networks and fuzzy systems with symbolic artificial intelligence (AI) methods to build comprehensive AI systems. Describes major AI problems (pattern recognition, speech recognition, prediction, decision-making, game-playing) and provides illustrative examples. Includes applications in engineering, business and finance.

Robot Learning

Download Robot Learning PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461531845
Total Pages : 247 pages
Book Rating : 4.4/5 (615 download)

DOWNLOAD NOW!


Book Synopsis Robot Learning by : J. H. Connell

Download or read book Robot Learning written by J. H. Connell and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 247 pages. Available in PDF, EPUB and Kindle. Book excerpt: Building a robot that learns to perform a task has been acknowledged as one of the major challenges facing artificial intelligence. Self-improving robots would relieve humans from much of the drudgery of programming and would potentially allow operation in environments that were changeable or only partially known. Progress towards this goal would also make fundamental contributions to artificial intelligence by furthering our understanding of how to successfully integrate disparate abilities such as perception, planning, learning and action. Although its roots can be traced back to the late fifties, the area of robot learning has lately seen a resurgence of interest. The flurry of interest in robot learning has partly been fueled by exciting new work in the areas of reinforcement earning, behavior-based architectures, genetic algorithms, neural networks and the study of artificial life. Robot Learning gives an overview of some of the current research projects in robot learning being carried out at leading universities and research laboratories in the United States. The main research directions in robot learning covered in this book include: reinforcement learning, behavior-based architectures, neural networks, map learning, action models, navigation and guided exploration.

Knowledge-Based Systems

Download Knowledge-Based Systems PDF Online Free

Author :
Publisher : Jones & Bartlett Publishers
ISBN 13 : 1449662706
Total Pages : 375 pages
Book Rating : 4.4/5 (496 download)

DOWNLOAD NOW!


Book Synopsis Knowledge-Based Systems by : Rajendra Akerkar

Download or read book Knowledge-Based Systems written by Rajendra Akerkar and published by Jones & Bartlett Publishers. This book was released on 2009-08-25 with total page 375 pages. Available in PDF, EPUB and Kindle. Book excerpt: A knowledge-based system (KBS) is a system that uses artificial intelligence techniques in problem-solving processes to support human decision-making, learning, and action. Ideal for advanced-undergraduate and graduate students, as well as business professionals, this text is designed to help users develop an appreciation of KBS and their architecture and understand a broad variety of knowledge-based techniques for decision support and planning. It assumes basic computer science skills and a math background that includes set theory, relations, elementary probability, and introductory concepts of artificial intelligence. Each of the 12 chapters is designed to be modular, providing instructors with the flexibility to model the book to their own course needs. Exercises are incorporated throughout the text to highlight certain aspects of the material presented and to simulate thought and discussion. A comprehensive text and resource, Knowledge-Based Systems provides access to the most current information in KBS and new artificial intelligences, as well as neural networks, fuzzy logic, genetic algorithms, and soft systems.

Neural Network Learning and Expert Systems

Download Neural Network Learning and Expert Systems PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 9780262071451
Total Pages : 392 pages
Book Rating : 4.0/5 (714 download)

DOWNLOAD NOW!


Book Synopsis Neural Network Learning and Expert Systems by : Stephen I. Gallant

Download or read book Neural Network Learning and Expert Systems written by Stephen I. Gallant and published by MIT Press. This book was released on 1993 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: presents a unified and in-depth development of neural network learning algorithms and neural network expert systems

Artificial Intelligence in the Age of Neural Networks and Brain Computing

Download Artificial Intelligence in the Age of Neural Networks and Brain Computing PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0323958168
Total Pages : 398 pages
Book Rating : 4.3/5 (239 download)

DOWNLOAD NOW!


Book Synopsis Artificial Intelligence in the Age of Neural Networks and Brain Computing by : Robert Kozma

Download or read book Artificial Intelligence in the Age of Neural Networks and Brain Computing written by Robert Kozma and published by Academic Press. This book was released on 2023-10-11 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial Intelligence in the Age of Neural Networks and Brain Computing, Second Edition demonstrates that present disruptive implications and applications of AI is a development of the unique attributes of neural networks, mainly machine learning, distributed architectures, massive parallel processing, black-box inference, intrinsic nonlinearity, and smart autonomous search engines. The book covers the major basic ideas of "brain-like computing" behind AI, provides a framework to deep learning, and launches novel and intriguing paradigms as possible future alternatives. The present success of AI-based commercial products proposed by top industry leaders, such as Google, IBM, Microsoft, Intel, and Amazon, can be interpreted using the perspective presented in this book by viewing the co-existence of a successful synergism among what is referred to as computational intelligence, natural intelligence, brain computing, and neural engineering. The new edition has been updated to include major new advances in the field, including many new chapters. - Developed from the 30th anniversary of the International Neural Network Society (INNS) and the 2017 International Joint Conference on Neural Networks (IJCNN - Authored by top experts, global field pioneers, and researchers working on cutting-edge applications in signal processing, speech recognition, games, adaptive control and decision-making - Edited by high-level academics and researchers in intelligent systems and neural networks - Includes all new chapters, including topics such as Frontiers in Recurrent Neural Network Research; Big Science, Team Science, Open Science for Neuroscience; A Model-Based Approach for Bridging Scales of Cortical Activity; A Cognitive Architecture for Object Recognition in Video; How Brain Architecture Leads to Abstract Thought; Deep Learning-Based Speech Separation and Advances in AI, Neural Networks

Knowledge-Based Systems, Four-Volume Set

Download Knowledge-Based Systems, Four-Volume Set PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0080535283
Total Pages : 1554 pages
Book Rating : 4.0/5 (85 download)

DOWNLOAD NOW!


Book Synopsis Knowledge-Based Systems, Four-Volume Set by : Cornelius T. Leondes

Download or read book Knowledge-Based Systems, Four-Volume Set written by Cornelius T. Leondes and published by Elsevier. This book was released on 2000-07-11 with total page 1554 pages. Available in PDF, EPUB and Kindle. Book excerpt: The design of knowledge systems is finding myriad applications from corporate databases to general decision support in areas as diverse as engineering, manufacturing and other industrial processes, medicine, business, and economics. In engineering, for example, knowledge bases can be utilized for reliable electric power system operation. In medicine they support complex diagnoses, while in business they inform the process of strategic planning. Programmed securities trading and the defeat of chess champion Kasparov by IBM's Big Blue are two familiar examples of dedicated knowledge bases in combination with an expert system for decision-making.With volumes covering "Implementation," "Optimization," "Computer Techniques," and "Systems and Applications," this comprehensive set constitutes a unique reference source for students, practitioners, and researchers in computer science, engineering, and the broad range of applications areas for knowledge-based systems.

Neural Networks and Deep Learning

Download Neural Networks and Deep Learning PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319944630
Total Pages : 512 pages
Book Rating : 4.3/5 (199 download)

DOWNLOAD NOW!


Book Synopsis Neural Networks and Deep Learning by : Charu C. Aggarwal

Download or read book Neural Networks and Deep Learning written by Charu C. Aggarwal and published by Springer. This book was released on 2018-08-25 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers both classical and modern models in deep learning. The primary focus is on the theory and algorithms of deep learning. The theory and algorithms of neural networks are particularly important for understanding important concepts, so that one can understand the important design concepts of neural architectures in different applications. Why do neural networks work? When do they work better than off-the-shelf machine-learning models? When is depth useful? Why is training neural networks so hard? What are the pitfalls? The book is also rich in discussing different applications in order to give the practitioner a flavor of how neural architectures are designed for different types of problems. Applications associated with many different areas like recommender systems, machine translation, image captioning, image classification, reinforcement-learning based gaming, and text analytics are covered. The chapters of this book span three categories: The basics of neural networks: Many traditional machine learning models can be understood as special cases of neural networks. An emphasis is placed in the first two chapters on understanding the relationship between traditional machine learning and neural networks. Support vector machines, linear/logistic regression, singular value decomposition, matrix factorization, and recommender systems are shown to be special cases of neural networks. These methods are studied together with recent feature engineering methods like word2vec. Fundamentals of neural networks: A detailed discussion of training and regularization is provided in Chapters 3 and 4. Chapters 5 and 6 present radial-basis function (RBF) networks and restricted Boltzmann machines. Advanced topics in neural networks: Chapters 7 and 8 discuss recurrent neural networks and convolutional neural networks. Several advanced topics like deep reinforcement learning, neural Turing machines, Kohonen self-organizing maps, and generative adversarial networks are introduced in Chapters 9 and 10. The book is written for graduate students, researchers, and practitioners. Numerous exercises are available along with a solution manual to aid in classroom teaching. Where possible, an application-centric view is highlighted in order to provide an understanding of the practical uses of each class of techniques.

Automated Knowledge Acquisition

Download Automated Knowledge Acquisition PDF Online Free

Author :
Publisher : Prentice Hall PTR
ISBN 13 :
Total Pages : 392 pages
Book Rating : 4.F/5 ( download)

DOWNLOAD NOW!


Book Synopsis Automated Knowledge Acquisition by : Sabrina Sestito

Download or read book Automated Knowledge Acquisition written by Sabrina Sestito and published by Prentice Hall PTR. This book was released on 1994 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: This tutorial provides clear explanations of techniques for automated knowledge acquisition. The techniques covered include: decision tree methods, progressive rule generation, explanation-based learning, artificial neural networks, and genetic algorithm approaches. The book is suitable for both advanced undergraduate and graduate students and computer professionals.

Neurocomputing

Download Neurocomputing PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262510758
Total Pages : 762 pages
Book Rating : 4.2/5 (625 download)

DOWNLOAD NOW!


Book Synopsis Neurocomputing by : James A. Anderson

Download or read book Neurocomputing written by James A. Anderson and published by MIT Press. This book was released on 1993-08-26 with total page 762 pages. Available in PDF, EPUB and Kindle. Book excerpt: In bringing together seminal articles on the foundations of research, the first volume of Neurocomputing has become an established guide to the background of concepts employed in this burgeoning field. Neurocomputing 2 collects forty-one articles covering network architecture, neurobiological computation, statistics and pattern classification, and problems and applications that suggest important directions for the evolution of neurocomputing.James A. Anderson is Professor in the Department of Cognitive and Linguistic Sciences at Brown University. Andras Pellionisz is a Research Associate Professor in the Department of Physiology and Biophysics at New York Medical Center and a Senior National Research Council Associate to NASA. Edward Rosenfeld is editor and publisher of the newsletters Intelligence and Medical Intelligence.

Linguistics for the Age of AI

Download Linguistics for the Age of AI PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262362600
Total Pages : 449 pages
Book Rating : 4.2/5 (623 download)

DOWNLOAD NOW!


Book Synopsis Linguistics for the Age of AI by : Marjorie Mcshane

Download or read book Linguistics for the Age of AI written by Marjorie Mcshane and published by MIT Press. This book was released on 2021-03-02 with total page 449 pages. Available in PDF, EPUB and Kindle. Book excerpt: A human-inspired, linguistically sophisticated model of language understanding for intelligent agent systems. One of the original goals of artificial intelligence research was to endow intelligent agents with human-level natural language capabilities. Recent AI research, however, has focused on applying statistical and machine learning approaches to big data rather than attempting to model what people do and how they do it. In this book, Marjorie McShane and Sergei Nirenburg return to the original goal of recreating human-level intelligence in a machine. They present a human-inspired, linguistically sophisticated model of language understanding for intelligent agent systems that emphasizes meaning--the deep, context-sensitive meaning that a person derives from spoken or written language.

Neural-Symbolic Learning Systems

Download Neural-Symbolic Learning Systems PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1447102118
Total Pages : 276 pages
Book Rating : 4.4/5 (471 download)

DOWNLOAD NOW!


Book Synopsis Neural-Symbolic Learning Systems by : Artur S. d'Avila Garcez

Download or read book Neural-Symbolic Learning Systems written by Artur S. d'Avila Garcez and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial Intelligence is concerned with producing devices that help or replace human beings in their daily activities. Neural-symbolic learning systems play a central role in this task by combining, and trying to benefit from, the advantages of both the neural and symbolic paradigms of artificial intelligence. This book provides a comprehensive introduction to the field of neural-symbolic learning systems, and an invaluable overview of the latest research issues in this area. It is divided into three sections, covering the main topics of neural-symbolic integration - theoretical advances in knowledge representation and learning, knowledge extraction from trained neural networks, and inconsistency handling in neural-symbolic systems. Each section provides a balance of theory and practice, giving the results of applications using real-world problems in areas such as DNA sequence analysis, power systems fault diagnosis, and software requirements specifications. Neural-Symbolic Learning Systems will be invaluable reading for researchers and graduate students in Engineering, Computing Science, Artificial Intelligence, Machine Learning and Neurocomputing. It will also be of interest to Intelligent Systems practitioners and anyone interested in applications of hybrid artificial intelligence systems.

Methodology and Tools in Knowledge-Based Systems

Download Methodology and Tools in Knowledge-Based Systems PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3540693483
Total Pages : 911 pages
Book Rating : 4.5/5 (46 download)

DOWNLOAD NOW!


Book Synopsis Methodology and Tools in Knowledge-Based Systems by : Angel P. del Pobil

Download or read book Methodology and Tools in Knowledge-Based Systems written by Angel P. del Pobil and published by Springer. This book was released on 2006-04-11 with total page 911 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two-volume set constitutes the refereed proceedings of the 11th International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems, IEA/AIE-98, held in Benicassim, Castellon, Spain, in June 1998.The two volumes present a total of 187 revised full papers selected from 291 submissions. In accordance with the conference, the books are devoted to new methodologies, knowledge modeling and hybrid techniques. The papers explore applications from virtually all subareas of AI including knowledge-based systems, fuzzyness and uncertainty, formal reasoning, neural information processing, multiagent systems, perception, robotics, natural language processing, machine learning, supervision and control systems, etc..

Knowledge-based Neurocomputing

Download Knowledge-based Neurocomputing PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 9780262032742
Total Pages : 512 pages
Book Rating : 4.0/5 (327 download)

DOWNLOAD NOW!


Book Synopsis Knowledge-based Neurocomputing by : Ian Cloete

Download or read book Knowledge-based Neurocomputing written by Ian Cloete and published by MIT Press. This book was released on 2000 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: Looking at ways to encode prior knowledge and to extract, refine, and revise knowledge within a neurocomputing system.Neurocomputing methods are loosely based on a model of the brain as a network of simple interconnected processing elements corresponding to neurons. These methods derive their power from the collective processing of artificial neurons, the chief advantage being that such systems can learn and adapt to a changing environment. In knowledge-based neurocomputing, the emphasis is on the use and representation of knowledge about an application. Explicit modeling of the knowledge represented by such a system remains a major research topic. The reason is that humans find it difficult to interpret the numeric representation of a neural network.The key assumption of knowledge-based neurocomputing is that knowledge is obtainable from, or can be represented by, a neurocomputing system in a form that humans can understand. That is, the knowledge embedded in the neurocomputing system can also be represented in a symbolic or well-structured form, such as Boolean functions, automata, rules, or other familiar ways. The focus of knowledge-based computing is on methods to encode prior knowledge and to extract, refine, and revise knowledge within a neurocomputing system.ContributorsC. Aldrich, J. Cervenka, I. Cloete, R.A. Cozzio, R. Drossu, J. Fletcher, C.L. Giles, F.S. Gouws, M. Hilario, M. Ishikawa, A. Lozowski, Z. Obradovic, C.W. Omlin, M. Riedmiller, P. Romero, G.P.J. Schmitz, J. Sima, A. Sperduti, M. Spott, J. Weisbrod, J.M. Zurada

Current Trends on Knowledge-Based Systems

Download Current Trends on Knowledge-Based Systems PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319519050
Total Pages : 302 pages
Book Rating : 4.3/5 (195 download)

DOWNLOAD NOW!


Book Synopsis Current Trends on Knowledge-Based Systems by : Giner Alor-Hernández

Download or read book Current Trends on Knowledge-Based Systems written by Giner Alor-Hernández and published by Springer. This book was released on 2017-03-13 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents innovative and high-quality research on the implementation of conceptual frameworks, strategies, techniques, methodologies, informatics platforms and models for developing advanced knowledge-based systems and their application in different fields, including Agriculture, Education, Automotive, Electrical Industry, Business Services, Food Manufacturing, Energy Services, Medicine and others. Knowledge-based technologies employ artificial intelligence methods to heuristically address problems that cannot be solved by means of formal techniques. These technologies draw on standard and novel approaches from various disciplines within Computer Science, including Knowledge Engineering, Natural Language Processing, Decision Support Systems, Artificial Intelligence, Databases, Software Engineering, etc. As a combination of different fields of Artificial Intelligence, the area of Knowledge-Based Systems applies knowledge representation, case-based reasoning, neural networks, Semantic Web and TICs used in different domains. The book offers a valuable resource for PhD students, Master’s and undergraduate students of Information Technology (IT)-related degrees such as Computer Science, Information Systems and Electronic Engineering.

Building Large Knowledge-based Systems

Download Building Large Knowledge-based Systems PDF Online Free

Author :
Publisher : Addison Wesley Publishing Company
ISBN 13 :
Total Pages : 408 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Building Large Knowledge-based Systems by : Douglas B. Lenat

Download or read book Building Large Knowledge-based Systems written by Douglas B. Lenat and published by Addison Wesley Publishing Company. This book was released on 1989 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: Chapter one presents the Cyc "philosophy" or paradigm. Chapter 2 presents a global overview of Cyc, including its representation language, the ontology f its knowledge base, and teh environment which it functions. Chapter 3 goes into much more detail on the representation language, including the structure and function of Cyc's metalevel agenda mechanism. Chapter 4 presents heuristics for ontological engineering, the pricnples upon whcihc Cyc's ontology is based. Chapter 5 the provides a glimpse into the global ontology of knowledge. Chapter 6 explains how we "solve" (i.e., adequately handle) the various tough representation thorns (substances, time, space, structures, composite mental/physical objects, beliefs, uncertainty, etc. ). Chapter 7 surveys the mistakes that new knowledge tnereres most often commit. Chapter 8, the concluding chapter, includes a brief status report on the project, and a statement of goals and a timetable for the coming five years.

XPS-99: Knowledge-Based Systems - Survey and Future Directions

Download XPS-99: Knowledge-Based Systems - Survey and Future Directions PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 354049149X
Total Pages : 235 pages
Book Rating : 4.5/5 (44 download)

DOWNLOAD NOW!


Book Synopsis XPS-99: Knowledge-Based Systems - Survey and Future Directions by : Frank Puppe

Download or read book XPS-99: Knowledge-Based Systems - Survey and Future Directions written by Frank Puppe and published by Springer. This book was released on 2005-11-20 with total page 235 pages. Available in PDF, EPUB and Kindle. Book excerpt: A special year like 1999 invites one to draw a balance of what has been achieved in the roughly 30 years of research and development in knowledge based systems (still abbreviated as XPS following the older term “expert systems”) and to take a look at th what the future may hold. For the 5 German conference on knowledge-based systems we therefore asked current and former speakers of the four working groups (FG’s) in the subdivision of knowledge-based systems (FA 1.5) of the German association of Informatics (GI) to present a survey of and future prospects for their respective fields: knowledge engineering, diagnosis, configuration, and case-based reasoning. An additional 14 technical papers deal with current topics in knowledge-based systems with an equal emphasis on methods and applications. They are selected from more than 50 papers accepted in the 4 parallel workshops of XPS-99: a) Knowledge Management, Organizational Memory and Reuse, b) various fields of applications, c) the traditional PuK Workshop (planning and configuration), and d) the GWCBR (German workshop on case-based reasoning). The other papers presented at these workshops are not included in this volume but are available as internal reports of Würzburg university together with the exhibition guide that emphasizing tool support for building knowledge based systems.

Neural Smithing

Download Neural Smithing PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262181908
Total Pages : 359 pages
Book Rating : 4.2/5 (621 download)

DOWNLOAD NOW!


Book Synopsis Neural Smithing by : Russell Reed

Download or read book Neural Smithing written by Russell Reed and published by MIT Press. This book was released on 1999-02-17 with total page 359 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial neural networks are nonlinear mapping systems whose structure is loosely based on principles observed in the nervous systems of humans and animals. The basic idea is that massive systems of simple units linked together in appropriate ways can generate many complex and interesting behaviors. This book focuses on the subset of feedforward artificial neural networks called multilayer perceptrons (MLP). These are the mostly widely used neural networks, with applications as diverse as finance (forecasting), manufacturing (process control), and science (speech and image recognition). This book presents an extensive and practical overview of almost every aspect of MLP methodology, progressing from an initial discussion of what MLPs are and how they might be used to an in-depth examination of technical factors affecting performance. The book can be used as a tool kit by readers interested in applying networks to specific problems, yet it also presents theory and references outlining the last ten years of MLP research.