Natural Language Processing and Text Mining

Download Natural Language Processing and Text Mining PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1846287545
Total Pages : 272 pages
Book Rating : 4.8/5 (462 download)

DOWNLOAD NOW!


Book Synopsis Natural Language Processing and Text Mining by : Anne Kao

Download or read book Natural Language Processing and Text Mining written by Anne Kao and published by Springer Science & Business Media. This book was released on 2007-03-06 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: Natural Language Processing and Text Mining not only discusses applications of Natural Language Processing techniques to certain Text Mining tasks, but also the converse, the use of Text Mining to assist NLP. It assembles a diverse views from internationally recognized researchers and emphasizes caveats in the attempt to apply Natural Language Processing to text mining. This state-of-the-art survey is a must-have for advanced students, professionals, and researchers.

Text Analytics with Python

Download Text Analytics with Python PDF Online Free

Author :
Publisher : Apress
ISBN 13 : 1484243544
Total Pages : 688 pages
Book Rating : 4.4/5 (842 download)

DOWNLOAD NOW!


Book Synopsis Text Analytics with Python by : Dipanjan Sarkar

Download or read book Text Analytics with Python written by Dipanjan Sarkar and published by Apress. This book was released on 2019-05-21 with total page 688 pages. Available in PDF, EPUB and Kindle. Book excerpt: Leverage Natural Language Processing (NLP) in Python and learn how to set up your own robust environment for performing text analytics. This second edition has gone through a major revamp and introduces several significant changes and new topics based on the recent trends in NLP. You’ll see how to use the latest state-of-the-art frameworks in NLP, coupled with machine learning and deep learning models for supervised sentiment analysis powered by Python to solve actual case studies. Start by reviewing Python for NLP fundamentals on strings and text data and move on to engineering representation methods for text data, including both traditional statistical models and newer deep learning-based embedding models. Improved techniques and new methods around parsing and processing text are discussed as well. Text summarization and topic models have been overhauled so the book showcases how to build, tune, and interpret topic models in the context of an interest dataset on NIPS conference papers. Additionally, the book covers text similarity techniques with a real-world example of movie recommenders, along with sentiment analysis using supervised and unsupervised techniques. There is also a chapter dedicated to semantic analysis where you’ll see how to build your own named entity recognition (NER) system from scratch. While the overall structure of the book remains the same, the entire code base, modules, and chapters has been updated to the latest Python 3.x release. What You'll Learn • Understand NLP and text syntax, semantics and structure• Discover text cleaning and feature engineering• Review text classification and text clustering • Assess text summarization and topic models• Study deep learning for NLP Who This Book Is For IT professionals, data analysts, developers, linguistic experts, data scientists and engineers and basically anyone with a keen interest in linguistics, analytics and generating insights from textual data.

Text Mining with R

Download Text Mining with R PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1491981628
Total Pages : 193 pages
Book Rating : 4.4/5 (919 download)

DOWNLOAD NOW!


Book Synopsis Text Mining with R by : Julia Silge

Download or read book Text Mining with R written by Julia Silge and published by "O'Reilly Media, Inc.". This book was released on 2017-06-12 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt: Chapter 7. Case Study : Comparing Twitter Archives; Getting the Data and Distribution of Tweets; Word Frequencies; Comparing Word Usage; Changes in Word Use; Favorites and Retweets; Summary; Chapter 8. Case Study : Mining NASA Metadata; How Data Is Organized at NASA; Wrangling and Tidying the Data; Some Initial Simple Exploration; Word Co-ocurrences and Correlations; Networks of Description and Title Words; Networks of Keywords; Calculating tf-idf for the Description Fields; What Is tf-idf for the Description Field Words?; Connecting Description Fields to Keywords; Topic Modeling.

Applied Text Analysis with Python

Download Applied Text Analysis with Python PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1491962992
Total Pages : 328 pages
Book Rating : 4.4/5 (919 download)

DOWNLOAD NOW!


Book Synopsis Applied Text Analysis with Python by : Benjamin Bengfort

Download or read book Applied Text Analysis with Python written by Benjamin Bengfort and published by "O'Reilly Media, Inc.". This book was released on 2018-06-11 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: From news and speeches to informal chatter on social media, natural language is one of the richest and most underutilized sources of data. Not only does it come in a constant stream, always changing and adapting in context; it also contains information that is not conveyed by traditional data sources. The key to unlocking natural language is through the creative application of text analytics. This practical book presents a data scientist’s approach to building language-aware products with applied machine learning. You’ll learn robust, repeatable, and scalable techniques for text analysis with Python, including contextual and linguistic feature engineering, vectorization, classification, topic modeling, entity resolution, graph analysis, and visual steering. By the end of the book, you’ll be equipped with practical methods to solve any number of complex real-world problems. Preprocess and vectorize text into high-dimensional feature representations Perform document classification and topic modeling Steer the model selection process with visual diagnostics Extract key phrases, named entities, and graph structures to reason about data in text Build a dialog framework to enable chatbots and language-driven interaction Use Spark to scale processing power and neural networks to scale model complexity

Data Mining and Reverse Engineering

Download Data Mining and Reverse Engineering PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9780412822506
Total Pages : 0 pages
Book Rating : 4.8/5 (225 download)

DOWNLOAD NOW!


Book Synopsis Data Mining and Reverse Engineering by : Stefano Spaccapietra

Download or read book Data Mining and Reverse Engineering written by Stefano Spaccapietra and published by Springer. This book was released on 1998-04-30 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Searching for Semantics: Data Mining, Reverse Engineering Stefano Spaccapietra Fred M aryanski Swiss Federal Institute of Technology University of Connecticut Lausanne, Switzerland Storrs, CT, USA REVIEW AND FUTURE DIRECTIONS In the last few years, database semantics research has turned sharply from a highly theoretical domain to one with more focus on practical aspects. The DS- 7 Working Conference held in October 1997 in Leysin, Switzerland, demon strated the more pragmatic orientation of the current generation of leading researchers. The papers presented at the meeting emphasized the two major areas: the discovery of semantics and semantic data modeling. The work in the latter category indicates that although object-oriented database management systems have emerged as commercially viable prod ucts, many fundamental modeling issues require further investigation. Today's object-oriented systems provide the capability to describe complex objects and include techniques for mapping from a relational database to objects. However, we must further explore the expression of information regarding the dimensions of time and space. Semantic models possess the richness to describe systems containing spatial and temporal data. The challenge of in corporating these features in a manner that promotes efficient manipulation by the subject specialist still requires extensive development.

Biomedical Natural Language Processing

Download Biomedical Natural Language Processing PDF Online Free

Author :
Publisher : John Benjamins Publishing Company
ISBN 13 : 9027271062
Total Pages : 174 pages
Book Rating : 4.0/5 (272 download)

DOWNLOAD NOW!


Book Synopsis Biomedical Natural Language Processing by : Kevin Bretonnel Cohen

Download or read book Biomedical Natural Language Processing written by Kevin Bretonnel Cohen and published by John Benjamins Publishing Company. This book was released on 2014-02-15 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biomedical Natural Language Processing is a comprehensive tour through the classic and current work in the field. It discusses all subjects from both a rule-based and a machine learning approach, and also describes each subject from the perspective of both biological science and clinical medicine. The intended audience is readers who already have a background in natural language processing, but a clear introduction makes it accessible to readers from the fields of bioinformatics and computational biology, as well. The book is suitable as a reference, as well as a text for advanced courses in biomedical natural language processing and text mining.

Natural Language Processing for Online Applications

Download Natural Language Processing for Online Applications PDF Online Free

Author :
Publisher : John Benjamins Publishing
ISBN 13 : 9027292442
Total Pages : 243 pages
Book Rating : 4.0/5 (272 download)

DOWNLOAD NOW!


Book Synopsis Natural Language Processing for Online Applications by : Peter Jackson

Download or read book Natural Language Processing for Online Applications written by Peter Jackson and published by John Benjamins Publishing. This book was released on 2007-06-05 with total page 243 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text covers the technologies of document retrieval, information extraction, and text categorization in a way which highlights commonalities in terms of both general principles and practical concerns. It assumes some mathematical background on the part of the reader, but the chapters typically begin with a non-mathematical account of the key issues. Current research topics are covered only to the extent that they are informing current applications; detailed coverage of longer term research and more theoretical treatments should be sought elsewhere. There are many pointers at the ends of the chapters that the reader can follow to explore the literature. However, the book does maintain a strong emphasis on evaluation in every chapter both in terms of methodology and the results of controlled experimentation.

Natural Language Processing with Python

Download Natural Language Processing with Python PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 0596555717
Total Pages : 506 pages
Book Rating : 4.5/5 (965 download)

DOWNLOAD NOW!


Book Synopsis Natural Language Processing with Python by : Steven Bird

Download or read book Natural Language Processing with Python written by Steven Bird and published by "O'Reilly Media, Inc.". This book was released on 2009-06-12 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a highly accessible introduction to natural language processing, the field that supports a variety of language technologies, from predictive text and email filtering to automatic summarization and translation. With it, you'll learn how to write Python programs that work with large collections of unstructured text. You'll access richly annotated datasets using a comprehensive range of linguistic data structures, and you'll understand the main algorithms for analyzing the content and structure of written communication. Packed with examples and exercises, Natural Language Processing with Python will help you: Extract information from unstructured text, either to guess the topic or identify "named entities" Analyze linguistic structure in text, including parsing and semantic analysis Access popular linguistic databases, including WordNet and treebanks Integrate techniques drawn from fields as diverse as linguistics and artificial intelligence This book will help you gain practical skills in natural language processing using the Python programming language and the Natural Language Toolkit (NLTK) open source library. If you're interested in developing web applications, analyzing multilingual news sources, or documenting endangered languages -- or if you're simply curious to have a programmer's perspective on how human language works -- you'll find Natural Language Processing with Python both fascinating and immensely useful.

Text Mining with MATLAB®

Download Text Mining with MATLAB® PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9781489994646
Total Pages : 0 pages
Book Rating : 4.9/5 (946 download)

DOWNLOAD NOW!


Book Synopsis Text Mining with MATLAB® by : Rafael E. Banchs

Download or read book Text Mining with MATLAB® written by Rafael E. Banchs and published by Springer. This book was released on 2014-09-19 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Text Mining with MATLAB provides a comprehensive introduction to text mining using MATLAB. It’s designed to help text mining practitioners, as well as those with little-to-no experience with text mining in general, familiarize themselves with MATLAB and its complex applications. The first part provides an introduction to basic procedures for handling and operating with text strings. Then, it reviews major mathematical modeling approaches. Statistical and geometrical models are also described along with main dimensionality reduction methods. Finally, it presents some specific applications such as document clustering, classification, search and terminology extraction. All descriptions presented are supported with practical examples that are fully reproducible. Further reading, as well as additional exercises and projects, are proposed at the end of each chapter for those readers interested in conducting further experimentation.

Clinical Text Mining

Download Clinical Text Mining PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319785036
Total Pages : 192 pages
Book Rating : 4.3/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Clinical Text Mining by : Hercules Dalianis

Download or read book Clinical Text Mining written by Hercules Dalianis and published by Springer. This book was released on 2018-05-14 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book describes the results of natural language processing and machine learning methods applied to clinical text from electronic patient records. It is divided into twelve chapters. Chapters 1-4 discuss the history and background of the original paper-based patient records, their purpose, and how they are written and structured. These initial chapters do not require any technical or medical background knowledge. The remaining eight chapters are more technical in nature and describe various medical classifications and terminologies such as ICD diagnosis codes, SNOMED CT, MeSH, UMLS, and ATC. Chapters 5-10 cover basic tools for natural language processing and information retrieval, and how to apply them to clinical text. The difference between rule-based and machine learning-based methods, as well as between supervised and unsupervised machine learning methods, are also explained. Next, ethical concerns regarding the use of sensitive patient records for research purposes are discussed, including methods for de-identifying electronic patient records and safely storing patient records. The book’s closing chapters present a number of applications in clinical text mining and summarise the lessons learned from the previous chapters. The book provides a comprehensive overview of technical issues arising in clinical text mining, and offers a valuable guide for advanced students in health informatics, computational linguistics, and information retrieval, and for researchers entering these fields.

Machine Learning and Data Mining in Pattern Recognition

Download Machine Learning and Data Mining in Pattern Recognition PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 364203070X
Total Pages : 837 pages
Book Rating : 4.6/5 (42 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning and Data Mining in Pattern Recognition by : Petra Perner

Download or read book Machine Learning and Data Mining in Pattern Recognition written by Petra Perner and published by Springer Science & Business Media. This book was released on 2009-07-21 with total page 837 pages. Available in PDF, EPUB and Kindle. Book excerpt: There is no royal road to science, and only those who do not dread the fatiguing climb of its steep paths have a chance of gaining its luminous summits. Karl Marx A Universial Genius of the 19th Century Many scientists from all over the world during the past two years since the MLDM 2007 have come along on the stony way to the sunny summit of science and have worked hard on new ideas and applications in the area of data mining in pattern r- ognition. Our thanks go to all those who took part in this year's MLDM. We appre- ate their submissions and the ideas shared with the Program Committee. We received over 205 submissions from all over the world to the International Conference on - chine Learning and Data Mining, MLDM 2009. The Program Committee carefully selected the best papers for this year’s program and gave detailed comments on each submitted paper. There were 63 papers selected for oral presentation and 17 papers for poster presentation. The topics range from theoretical topics for classification, clustering, association rule and pattern mining to specific data-mining methods for the different multimedia data types such as image mining, text mining, video mining and Web mining. Among these topics this year were special contributions to subtopics such as attribute discre- zation and data preparation, novelty and outlier detection, and distances and simila- ties.

Supervised Machine Learning for Text Analysis in R

Download Supervised Machine Learning for Text Analysis in R PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000461971
Total Pages : 402 pages
Book Rating : 4.0/5 (4 download)

DOWNLOAD NOW!


Book Synopsis Supervised Machine Learning for Text Analysis in R by : Emil Hvitfeldt

Download or read book Supervised Machine Learning for Text Analysis in R written by Emil Hvitfeldt and published by CRC Press. This book was released on 2021-10-22 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Text data is important for many domains, from healthcare to marketing to the digital humanities, but specialized approaches are necessary to create features for machine learning from language. Supervised Machine Learning for Text Analysis in R explains how to preprocess text data for modeling, train models, and evaluate model performance using tools from the tidyverse and tidymodels ecosystem. Models like these can be used to make predictions for new observations, to understand what natural language features or characteristics contribute to differences in the output, and more. If you are already familiar with the basics of predictive modeling, use the comprehensive, detailed examples in this book to extend your skills to the domain of natural language processing. This book provides practical guidance and directly applicable knowledge for data scientists and analysts who want to integrate unstructured text data into their modeling pipelines. Learn how to use text data for both regression and classification tasks, and how to apply more straightforward algorithms like regularized regression or support vector machines as well as deep learning approaches. Natural language must be dramatically transformed to be ready for computation, so we explore typical text preprocessing and feature engineering steps like tokenization and word embeddings from the ground up. These steps influence model results in ways we can measure, both in terms of model metrics and other tangible consequences such as how fair or appropriate model results are.

Foundations of Statistical Natural Language Processing

Download Foundations of Statistical Natural Language Processing PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262303795
Total Pages : 719 pages
Book Rating : 4.2/5 (623 download)

DOWNLOAD NOW!


Book Synopsis Foundations of Statistical Natural Language Processing by : Christopher Manning

Download or read book Foundations of Statistical Natural Language Processing written by Christopher Manning and published by MIT Press. This book was released on 1999-05-28 with total page 719 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical approaches to processing natural language text have become dominant in recent years. This foundational text is the first comprehensive introduction to statistical natural language processing (NLP) to appear. The book contains all the theory and algorithms needed for building NLP tools. It provides broad but rigorous coverage of mathematical and linguistic foundations, as well as detailed discussion of statistical methods, allowing students and researchers to construct their own implementations. The book covers collocation finding, word sense disambiguation, probabilistic parsing, information retrieval, and other applications.

Text Mining

Download Text Mining PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 9780470689653
Total Pages : 222 pages
Book Rating : 4.6/5 (896 download)

DOWNLOAD NOW!


Book Synopsis Text Mining by : Michael W. Berry

Download or read book Text Mining written by Michael W. Berry and published by John Wiley & Sons. This book was released on 2010-02-25 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: Text Mining: Applications and Theory presents the state-of-the-art algorithms for text mining from both the academic and industrial perspectives. The contributors span several countries and scientific domains: universities, industrial corporations, and government laboratories, and demonstrate the use of techniques from machine learning, knowledge discovery, natural language processing and information retrieval to design computational models for automated text analysis and mining. This volume demonstrates how advancements in the fields of applied mathematics, computer science, machine learning, and natural language processing can collectively capture, classify, and interpret words and their contexts. As suggested in the preface, text mining is needed when “words are not enough.” This book: Provides state-of-the-art algorithms and techniques for critical tasks in text mining applications, such as clustering, classification, anomaly and trend detection, and stream analysis. Presents a survey of text visualization techniques and looks at the multilingual text classification problem. Discusses the issue of cybercrime associated with chatrooms. Features advances in visual analytics and machine learning along with illustrative examples. Is accompanied by a supporting website featuring datasets. Applied mathematicians, statisticians, practitioners and students in computer science, bioinformatics and engineering will find this book extremely useful.

Blueprints for Text Analytics Using Python

Download Blueprints for Text Analytics Using Python PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1492074039
Total Pages : 504 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Blueprints for Text Analytics Using Python by : Jens Albrecht

Download or read book Blueprints for Text Analytics Using Python written by Jens Albrecht and published by "O'Reilly Media, Inc.". This book was released on 2020-12-04 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt: Turning text into valuable information is essential for businesses looking to gain a competitive advantage. With recent improvements in natural language processing (NLP), users now have many options for solving complex challenges. But it's not always clear which NLP tools or libraries would work for a business's needs, or which techniques you should use and in what order. This practical book provides data scientists and developers with blueprints for best practice solutions to common tasks in text analytics and natural language processing. Authors Jens Albrecht, Sidharth Ramachandran, and Christian Winkler provide real-world case studies and detailed code examples in Python to help you get started quickly. Extract data from APIs and web pages Prepare textual data for statistical analysis and machine learning Use machine learning for classification, topic modeling, and summarization Explain AI models and classification results Explore and visualize semantic similarities with word embeddings Identify customer sentiment in product reviews Create a knowledge graph based on named entities and their relations

Speech & Language Processing

Download Speech & Language Processing PDF Online Free

Author :
Publisher : Pearson Education India
ISBN 13 : 9788131716724
Total Pages : 912 pages
Book Rating : 4.7/5 (167 download)

DOWNLOAD NOW!


Book Synopsis Speech & Language Processing by : Dan Jurafsky

Download or read book Speech & Language Processing written by Dan Jurafsky and published by Pearson Education India. This book was released on 2000-09 with total page 912 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Natural Language Processing in Artificial Intelligence

Download Natural Language Processing in Artificial Intelligence PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000711315
Total Pages : 297 pages
Book Rating : 4.0/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Natural Language Processing in Artificial Intelligence by : Brojo Kishore Mishra

Download or read book Natural Language Processing in Artificial Intelligence written by Brojo Kishore Mishra and published by CRC Press. This book was released on 2020-11-01 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume focuses on natural language processing, artificial intelligence, and allied areas. Natural language processing enables communication between people and computers and automatic translation to facilitate easy interaction with others around the world. This book discusses theoretical work and advanced applications, approaches, and techniques for computational models of information and how it is presented by language (artificial, human, or natural) in other ways. It looks at intelligent natural language processing and related models of thought, mental states, reasoning, and other cognitive processes. It explores the difficult problems and challenges related to partiality, underspecification, and context-dependency, which are signature features of information in nature and natural languages. Key features: Addresses the functional frameworks and workflow that are trending in NLP and AI Looks at the latest technologies and the major challenges, issues, and advances in NLP and AI Explores an intelligent field monitoring and automated system through AI with NLP and its implications for the real world Discusses data acquisition and presents a real-time case study with illustrations related to data-intensive technologies in AI and NLP.