Multistate Analysis of Life Histories with R

Download Multistate Analysis of Life Histories with R PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 331908383X
Total Pages : 323 pages
Book Rating : 4.3/5 (19 download)

DOWNLOAD NOW!


Book Synopsis Multistate Analysis of Life Histories with R by : Frans Willekens

Download or read book Multistate Analysis of Life Histories with R written by Frans Willekens and published by Springer. This book was released on 2014-09-11 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to multistate event history analysis. It is an extension of survival analysis, in which a single terminal event (endpoint) is considered and the time-to-event is studied. Multistate models focus on life histories or trajectories, conceptualized as sequences of states and sequences of transitions between states. Life histories are modeled as realizations of continuous-time Markov processes. The model parameters, transition rates, are estimated from data on event counts and populations at risk, using the statistical theory of counting processes. The Comprehensive R Network Archive (CRAN) includes several packages for multistate modeling. This book is about Biograph. The package is designed to (a) enhance exploratory analysis of life histories and (b) make multistate modeling accessible. The package incorporates utilities that connect to several packages for multistate modeling, including survival, eha, Epi, mvna,, mstate, msm, and TraMineR for sequence analysis. The book is a ‘hands-on’ presentation of Biograph and the packages listed. It is written from the perspective of the user. To help the user master the techniques and the software, a single data set is used to illustrate the methods and software. It is the subsample of the German Life History Survey, which was also used by Blossfeld and Rohwer in their popular textbook on event history modeling. Another data set, the Netherlands Family and Fertility Survey, is used to illustrate how Biograph can assist in answering questions on life paths of cohorts and individuals. The book is suitable as a textbook for graduate courses on event history analysis and introductory courses on competing risks and multistate models. It may also be used as a self-study book. The R code used in the book is available online. Frans Willekens is affiliated with the Max Planck Institute for Demographic Research (MPIDR) in Rostock, Germany. He is Emeritus Professor of Demography at the University of Groningen, a Honorary Fellow of the Netherlands Interdisciplinary Demographic Institute (NIDI) in the Hague, and a Research Associate of the International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria. He is a member of Royal Netherlands Academy of Arts and Sciences (KNAW). He has contributed to the modeling and simulation of life histories, mainly in the context of population forecasting.

Multistate Models for the Analysis of Life History Data

Download Multistate Models for the Analysis of Life History Data PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1498715613
Total Pages : 440 pages
Book Rating : 4.4/5 (987 download)

DOWNLOAD NOW!


Book Synopsis Multistate Models for the Analysis of Life History Data by : Richard J Cook

Download or read book Multistate Models for the Analysis of Life History Data written by Richard J Cook and published by CRC Press. This book was released on 2018-05-15 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multistate Models for the Analysis of Life History Data provides the first comprehensive treatment of multistate modeling and analysis, including parametric, nonparametric and semiparametric methods applicable to many types of life history data. Special models such as illness-death, competing risks and progressive processes are considered, as well as more complex models. The book provides both theoretical development and illustrations of analysis based on data from randomized trials and observational cohort studies in health research. It features: Discusses a wide range of applications of multistate models, Presents methods for both continuously and intermittently observed life history processes, Gives a thorough discussion of conditionally independent censoring and observation processes, Discusses models with random effects and joint models for two or more multistate processes, Discusses and illustrates software for multistate analysis that is available in R, Target audience includes those engaged in research and applications involving multistate models.

Multistate Models for the Analysis of Life History Data

Download Multistate Models for the Analysis of Life History Data PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1351646052
Total Pages : 500 pages
Book Rating : 4.3/5 (516 download)

DOWNLOAD NOW!


Book Synopsis Multistate Models for the Analysis of Life History Data by : Richard J Cook

Download or read book Multistate Models for the Analysis of Life History Data written by Richard J Cook and published by CRC Press. This book was released on 2018-05-15 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multistate Models for the Analysis of Life History Data provides the first comprehensive treatment of multistate modeling and analysis, including parametric, nonparametric and semiparametric methods applicable to many types of life history data. Special models such as illness-death, competing risks and progressive processes are considered, as well as more complex models. The book provides both theoretical development and illustrations of analysis based on data from randomized trials and observational cohort studies in health research. It features: Discusses a wide range of applications of multistate models, Presents methods for both continuously and intermittently observed life history processes, Gives a thorough discussion of conditionally independent censoring and observation processes, Discusses models with random effects and joint models for two or more multistate processes, Discusses and illustrates software for multistate analysis that is available in R, Target audience includes those engaged in research and applications involving multistate models.

Competing Risks and Multistate Models with R

Download Competing Risks and Multistate Models with R PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461420350
Total Pages : 249 pages
Book Rating : 4.4/5 (614 download)

DOWNLOAD NOW!


Book Synopsis Competing Risks and Multistate Models with R by : Jan Beyersmann

Download or read book Competing Risks and Multistate Models with R written by Jan Beyersmann and published by Springer Science & Business Media. This book was released on 2011-11-18 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers competing risks and multistate models, sometimes summarized as event history analysis. These models generalize the analysis of time to a single event (survival analysis) to analysing the timing of distinct terminal events (competing risks) and possible intermediate events (multistate models). Both R and multistate methods are promoted with a focus on nonparametric methods.

Sensitivity Analysis: Matrix Methods in Demography and Ecology

Download Sensitivity Analysis: Matrix Methods in Demography and Ecology PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3030105342
Total Pages : 308 pages
Book Rating : 4.0/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Sensitivity Analysis: Matrix Methods in Demography and Ecology by : Hal Caswell

Download or read book Sensitivity Analysis: Matrix Methods in Demography and Ecology written by Hal Caswell and published by Springer. This book was released on 2019-04-02 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book shows how to use sensitivity analysis in demography. It presents new methods for individuals, cohorts, and populations, with applications to humans, other animals, and plants. The analyses are based on matrix formulations of age-classified, stage-classified, and multistate population models. Methods are presented for linear and nonlinear, deterministic and stochastic, and time-invariant and time-varying cases. Readers will discover results on the sensitivity of statistics of longevity, life disparity, occupancy times, the net reproductive rate, and statistics of Markov chain models in demography. They will also see applications of sensitivity analysis to population growth rates, stable population structures, reproductive value, equilibria under immigration and nonlinearity, and population cycles. Individual stochasticity is a theme throughout, with a focus that goes beyond expected values to include variances in demographic outcomes. The calculations are easily and accurately implemented in matrix-oriented programming languages such as Matlab or R. Sensitivity analysis will help readers create models to predict the effect of future changes, to evaluate policy effects, and to identify possible evolutionary responses to the environment. Complete with many examples of the application, the book will be of interest to researchers and graduate students in human demography and population biology. The material will also appeal to those in mathematical biology and applied mathematics.

Survival Analysis

Download Survival Analysis PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000624005
Total Pages : 303 pages
Book Rating : 4.0/5 (6 download)

DOWNLOAD NOW!


Book Synopsis Survival Analysis by : H J Vaman

Download or read book Survival Analysis written by H J Vaman and published by CRC Press. This book was released on 2022-08-26 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: Survival analysis generally deals with analysis of data arising from clinical trials. Censoring, truncation, and missing data create analytical challenges and the statistical methods and inference require novel and different approaches for analysis. Statistical properties, essentially asymptotic ones, of the estimators and tests are aptly handled in the counting process framework which is drawn from the larger arm of stochastic calculus. With explosion of data generation during the past two decades, survival data has also enlarged assuming a gigantic size. Most statistical methods developed before the millennium were based on a linear approach even in the face of complex nature of survival data. Nonparametric nonlinear methods are best envisaged in the Machine Learning school. This book attempts to cover all these aspects in a concise way. Survival Analysis offers an integrated blend of statistical methods and machine learning useful in analysis of survival data. The purpose of the offering is to give an exposure to the machine learning trends for lifetime data analysis. Features: Classical survival analysis techniques for estimating statistical functional and hypotheses testing Regression methods covering the popular Cox relative risk regression model, Aalen’s additive hazards model, etc. Information criteria to facilitate model selection including Akaike, Bayes, and Focused Penalized methods Survival trees and ensemble techniques of bagging, boosting, and random survival forests A brief exposure of neural networks for survival data R program illustration throughout the book

Applied Survival Analysis Using R

Download Applied Survival Analysis Using R PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319312456
Total Pages : 245 pages
Book Rating : 4.3/5 (193 download)

DOWNLOAD NOW!


Book Synopsis Applied Survival Analysis Using R by : Dirk F. Moore

Download or read book Applied Survival Analysis Using R written by Dirk F. Moore and published by Springer. This book was released on 2016-05-11 with total page 245 pages. Available in PDF, EPUB and Kindle. Book excerpt: Applied Survival Analysis Using R covers the main principles of survival analysis, gives examples of how it is applied, and teaches how to put those principles to use to analyze data using R as a vehicle. Survival data, where the primary outcome is time to a specific event, arise in many areas of biomedical research, including clinical trials, epidemiological studies, and studies of animals. Many survival methods are extensions of techniques used in linear regression and categorical data, while other aspects of this field are unique to survival data. This text employs numerous actual examples to illustrate survival curve estimation, comparison of survivals of different groups, proper accounting for censoring and truncation, model variable selection, and residual analysis. Because explaining survival analysis requires more advanced mathematics than many other statistical topics, this book is organized with basic concepts and most frequently used procedures covered in earlier chapters, with more advanced topics near the end and in the appendices. A background in basic linear regression and categorical data analysis, as well as a basic knowledge of calculus and the R system, will help the reader to fully appreciate the information presented. Examples are simple and straightforward while still illustrating key points, shedding light on the application of survival analysis in a way that is useful for graduate students, researchers, and practitioners in biostatistics.

Heart Rate Variability Analysis with the R package RHRV

Download Heart Rate Variability Analysis with the R package RHRV PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319653555
Total Pages : 173 pages
Book Rating : 4.3/5 (196 download)

DOWNLOAD NOW!


Book Synopsis Heart Rate Variability Analysis with the R package RHRV by : Constantino Antonio García Martínez

Download or read book Heart Rate Variability Analysis with the R package RHRV written by Constantino Antonio García Martínez and published by Springer. This book was released on 2017-09-18 with total page 173 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces readers to the basic concepts of Heart Rate Variability (HRV) and its most important analysis algorithms using a hands-on approach based on the open-source RHRV software. HRV refers to the variation over time of the intervals between consecutive heartbeats. Despite its apparent simplicity, HRV is one of the most important markers of the autonomic nervous system activity and it has been recognized as a useful predictor of several pathologies. The book discusses all the basic HRV topics, including the physiological contributions to HRV, clinical applications, HRV data acquisition, HRV data manipulation and HRV analysis using time-domain, frequency-domain, time-frequency, nonlinear and fractal techniques. Detailed examples based on real data sets are provided throughout the book to illustrate the algorithms and discuss the physiological implications of the results. Offering a comprehensive guide to analyzing beat information with RHRV, the book is intended for masters and Ph.D. students in various disciplines such as biomedical engineering, human and veterinary medicine, biology, and pharmacy, as well as researchers conducting heart rate variability analyses on both human and animal data.

Bayesian Cost-Effectiveness Analysis with the R package BCEA

Download Bayesian Cost-Effectiveness Analysis with the R package BCEA PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319557181
Total Pages : 181 pages
Book Rating : 4.3/5 (195 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Cost-Effectiveness Analysis with the R package BCEA by : Gianluca Baio

Download or read book Bayesian Cost-Effectiveness Analysis with the R package BCEA written by Gianluca Baio and published by Springer. This book was released on 2017-05-25 with total page 181 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides a description of the process of health economic evaluation and modelling for cost-effectiveness analysis, particularly from the perspective of a Bayesian statistical approach. Some relevant theory and introductory concepts are presented using practical examples and two running case studies. The book also describes in detail how to perform health economic evaluations using the R package BCEA (Bayesian Cost-Effectiveness Analysis). BCEA can be used to post-process the results of a Bayesian cost-effectiveness model and perform advanced analyses producing standardised and highly customisable outputs. It presents all the features of the package, including its many functions and their practical application, as well as its user-friendly web interface. The book is a valuable resource for statisticians and practitioners working in the field of health economics wanting to simplify and standardise their workflow, for example in the preparation of dossiers in support of marketing authorisation, or academic and scientific publications.

Primer to Analysis of Genomic Data Using R

Download Primer to Analysis of Genomic Data Using R PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319144758
Total Pages : 283 pages
Book Rating : 4.3/5 (191 download)

DOWNLOAD NOW!


Book Synopsis Primer to Analysis of Genomic Data Using R by : Cedric Gondro

Download or read book Primer to Analysis of Genomic Data Using R written by Cedric Gondro and published by Springer. This book was released on 2015-05-18 with total page 283 pages. Available in PDF, EPUB and Kindle. Book excerpt: Through this book, researchers and students will learn to use R for analysis of large-scale genomic data and how to create routines to automate analytical steps. The philosophy behind the book is to start with real world raw datasets and perform all the analytical steps needed to reach final results. Though theory plays an important role, this is a practical book for graduate and undergraduate courses in bioinformatics and genomic analysis or for use in lab sessions. How to handle and manage high-throughput genomic data, create automated workflows and speed up analyses in R is also taught. A wide range of R packages useful for working with genomic data are illustrated with practical examples. The key topics covered are association studies, genomic prediction, estimation of population genetic parameters and diversity, gene expression analysis, functional annotation of results using publically available databases and how to work efficiently in R with large genomic datasets. Important principles are demonstrated and illustrated through engaging examples which invite the reader to work with the provided datasets. Some methods that are discussed in this volume include: signatures of selection, population parameters (LD, FST, FIS, etc); use of a genomic relationship matrix for population diversity studies; use of SNP data for parentage testing; snpBLUP and gBLUP for genomic prediction. Step-by-step, all the R code required for a genome-wide association study is shown: starting from raw SNP data, how to build databases to handle and manage the data, quality control and filtering measures, association testing and evaluation of results, through to identification and functional annotation of candidate genes. Similarly, gene expression analyses are shown using microarray and RNAseq data. At a time when genomic data is decidedly big, the skills from this book are critical. In recent years R has become the de facto tool for analysis of gene expression data, in addition to its prominent role in analysis of genomic data. Benefits to using R include the integrated development environment for analysis, flexibility and control of the analytic workflow. Included topics are core components of advanced undergraduate and graduate classes in bioinformatics, genomics and statistical genetics. This book is also designed to be used by students in computer science and statistics who want to learn the practical aspects of genomic analysis without delving into algorithmic details. The datasets used throughout the book may be downloaded from the publisher’s website.

Emerging Topics in Modeling Interval-Censored Survival Data

Download Emerging Topics in Modeling Interval-Censored Survival Data PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031123662
Total Pages : 322 pages
Book Rating : 4.0/5 (311 download)

DOWNLOAD NOW!


Book Synopsis Emerging Topics in Modeling Interval-Censored Survival Data by : Jianguo Sun

Download or read book Emerging Topics in Modeling Interval-Censored Survival Data written by Jianguo Sun and published by Springer Nature. This book was released on 2022-11-29 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book primarily aims to discuss emerging topics in statistical methods and to booster research, education, and training to advance statistical modeling on interval-censored survival data. Commonly collected from public health and biomedical research, among other sources, interval-censored survival data can easily be mistaken for typical right-censored survival data, which can result in erroneous statistical inference due to the complexity of this type of data. The book invites a group of internationally leading researchers to systematically discuss and explore the historical development of the associated methods and their computational implementations, as well as emerging topics related to interval-censored data. It covers a variety of topics, including univariate interval-censored data, multivariate interval-censored data, clustered interval-censored data, competing risk interval-censored data, data with interval-censored covariates, interval-censored data from electric medical records, and misclassified interval-censored data. Researchers, students, and practitioners can directly make use of the state-of-the-art methods covered in the book to tackle their problems in research, education, training and consultation.

Data Wrangling with R

Download Data Wrangling with R PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319455990
Total Pages : 237 pages
Book Rating : 4.3/5 (194 download)

DOWNLOAD NOW!


Book Synopsis Data Wrangling with R by : Bradley C. Boehmke, Ph.D.

Download or read book Data Wrangling with R written by Bradley C. Boehmke, Ph.D. and published by Springer. This book was released on 2016-11-17 with total page 237 pages. Available in PDF, EPUB and Kindle. Book excerpt: This guide for practicing statisticians, data scientists, and R users and programmers will teach the essentials of preprocessing: data leveraging the R programming language to easily and quickly turn noisy data into usable pieces of information. Data wrangling, which is also commonly referred to as data munging, transformation, manipulation, janitor work, etc., can be a painstakingly laborious process. Roughly 80% of data analysis is spent on cleaning and preparing data; however, being a prerequisite to the rest of the data analysis workflow (visualization, analysis, reporting), it is essential that one become fluent and efficient in data wrangling techniques. This book will guide the user through the data wrangling process via a step-by-step tutorial approach and provide a solid foundation for working with data in R. The author's goal is to teach the user how to easily wrangle data in order to spend more time on understanding the content of the data. By the end of the book, the user will have learned: How to work with different types of data such as numerics, characters, regular expressions, factors, and dates The difference between different data structures and how to create, add additional components to, and subset each data structure How to acquire and parse data from locations previously inaccessible How to develop functions and use loop control structures to reduce code redundancy How to use pipe operators to simplify code and make it more readable How to reshape the layout of data and manipulate, summarize, and join data sets

ggplot2

Download ggplot2 PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319242776
Total Pages : 266 pages
Book Rating : 4.3/5 (192 download)

DOWNLOAD NOW!


Book Synopsis ggplot2 by : Hadley Wickham

Download or read book ggplot2 written by Hadley Wickham and published by Springer. This book was released on 2016-06-08 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new edition to the classic book by ggplot2 creator Hadley Wickham highlights compatibility with knitr and RStudio. ggplot2 is a data visualization package for R that helps users create data graphics, including those that are multi-layered, with ease. With ggplot2, it's easy to: produce handsome, publication-quality plots with automatic legends created from the plot specification superimpose multiple layers (points, lines, maps, tiles, box plots) from different data sources with automatically adjusted common scales add customizable smoothers that use powerful modeling capabilities of R, such as loess, linear models, generalized additive models, and robust regression save any ggplot2 plot (or part thereof) for later modification or reuse create custom themes that capture in-house or journal style requirements and that can easily be applied to multiple plots approach a graph from a visual perspective, thinking about how each component of the data is represented on the final plot This book will be useful to everyone who has struggled with displaying data in an informative and attractive way. Some basic knowledge of R is necessary (e.g., importing data into R). ggplot2 is a mini-language specifically tailored for producing graphics, and you'll learn everything you need in the book. After reading this book you'll be able to produce graphics customized precisely for your problems, and you'll find it easy to get graphics out of your head and on to the screen or page.

R for Marketing Research and Analytics

Download R for Marketing Research and Analytics PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319144367
Total Pages : 459 pages
Book Rating : 4.3/5 (191 download)

DOWNLOAD NOW!


Book Synopsis R for Marketing Research and Analytics by : Chris Chapman

Download or read book R for Marketing Research and Analytics written by Chris Chapman and published by Springer. This book was released on 2015-03-09 with total page 459 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a complete introduction to the power of R for marketing research practitioners. The text describes statistical models from a conceptual point of view with a minimal amount of mathematics, presuming only an introductory knowledge of statistics. Hands-on chapters accelerate the learning curve by asking readers to interact with R from the beginning. Core topics include the R language, basic statistics, linear modeling, and data visualization, which is presented throughout as an integral part of analysis. Later chapters cover more advanced topics yet are intended to be approachable for all analysts. These sections examine logistic regression, customer segmentation, hierarchical linear modeling, market basket analysis, structural equation modeling, and conjoint analysis in R. The text uniquely presents Bayesian models with a minimally complex approach, demonstrating and explaining Bayesian methods alongside traditional analyses for analysis of variance, linear models, and metric and choice-based conjoint analysis. With its emphasis on data visualization, model assessment, and development of statistical intuition, this book provides guidance for any analyst looking to develop or improve skills in R for marketing applications.

Simulation and Inference for Stochastic Processes with YUIMA

Download Simulation and Inference for Stochastic Processes with YUIMA PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319555693
Total Pages : 277 pages
Book Rating : 4.3/5 (195 download)

DOWNLOAD NOW!


Book Synopsis Simulation and Inference for Stochastic Processes with YUIMA by : Stefano M. Iacus

Download or read book Simulation and Inference for Stochastic Processes with YUIMA written by Stefano M. Iacus and published by Springer. This book was released on 2018-06-01 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: The YUIMA package is the first comprehensive R framework based on S4 classes and methods which allows for the simulation of stochastic differential equations driven by Wiener process, Lévy processes or fractional Brownian motion, as well as CARMA, COGARCH, and Point processes. The package performs various central statistical analyses such as quasi maximum likelihood estimation, adaptive Bayes estimation, structural change point analysis, hypotheses testing, asynchronous covariance estimation, lead-lag estimation, LASSO model selection, and so on. YUIMA also supports stochastic numerical analysis by fast computation of the expected value of functionals of stochastic processes through automatic asymptotic expansion by means of the Malliavin calculus. All models can be multidimensional, multiparametric or non parametric.The book explains briefly the underlying theory for simulation and inference of several classes of stochastic processes and then presents both simulation experiments and applications to real data. Although these processes have been originally proposed in physics and more recently in finance, they are becoming popular also in biology due to the fact the time course experimental data are now available. The YUIMA package, available on CRAN, can be freely downloaded and this companion book will make the user able to start his or her analysis from the first page.

Learn ggplot2 Using Shiny App

Download Learn ggplot2 Using Shiny App PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319530194
Total Pages : 356 pages
Book Rating : 4.3/5 (195 download)

DOWNLOAD NOW!


Book Synopsis Learn ggplot2 Using Shiny App by : Keon-Woong Moon

Download or read book Learn ggplot2 Using Shiny App written by Keon-Woong Moon and published by Springer. This book was released on 2017-04-13 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book and app is for practitioners, professionals, researchers, and students who want to learn how to make a plot within the R environment using ggplot2, step-by-step without coding. In widespread use in the statistical communities, R is a free software language and environment for statistical programming and graphics. Many users find R to have a steep learning curve but to be extremely useful once overcome. ggplot2 is an extremely popular package tailored for producing graphics within R but which requires coding and has a steep learning curve itself, and Shiny is an open source R package that provides a web framework for building web applications using R without requiring HTML, CSS, or JavaScript. This manual—"integrating" R, ggplot2, and Shiny—introduces a new Shiny app, Learn ggplot2, that allows users to make plots easily without coding. With the Learn ggplot2 Shiny app, users can make plots using ggplot2 without having to code each step, reducing typos and error messages and allowing users to become familiar with ggplot2 code. The app makes it easy to apply themes, make multiplots (combining several plots into one plot), and download plots as PNG, PDF, or PowerPoint files with editable vector graphics. Users can also make plots on any computer or smart phone. Learn ggplot2 Using Shiny App allows users to Make publication-ready plots in minutes without coding Download plots with desired width, height, and resolution Plot and download plots in png, pdf, and PowerPoint formats, with or without R code and with editable vector graphics

Biodemography

Download Biodemography PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 0691129002
Total Pages : 476 pages
Book Rating : 4.6/5 (911 download)

DOWNLOAD NOW!


Book Synopsis Biodemography by : James R. Carey

Download or read book Biodemography written by James R. Carey and published by Princeton University Press. This book was released on 2020-01-07 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: An authoritative overview of the concepts and applications of biological demography This book provides a comprehensive introduction to biodemography, an exciting interdisciplinary field that unites the natural science of biology with the social science of human demography. Biodemography is an essential resource for demographers, epidemiologists, gerontologists, and health professionals as well as ecologists, population biologists, entomologists, and conservation biologists. This accessible and innovative book is also ideal for the classroom. James Carey and Deborah Roach cover everything from baseline demographic concepts to biodemographic applications, and present models and equations in discrete rather than continuous form to enhance mathematical accessibility. They use a wealth of real-world examples that draw from data sets on both human and nonhuman species and offer an interdisciplinary approach to demography like no other, with topics ranging from kinship theory and family demography to reliability engineering, tort law, and demographic disasters such as the Titanic and the destruction of Napoleon's Grande Armée. Provides the first synthesis of demography and biology Covers baseline demographic models and concepts such as Lexis diagrams, mortality, fecundity, and population theory Features in-depth discussions of biodemographic applications like harvesting theory and mark-recapture Draws from data sets on species ranging from fruit flies and plants to elephants and humans Uses a uniquely interdisciplinary approach to demography, bringing together a diverse range of concepts, models, and applications Includes informative "biodemographic shorts," appendixes on data visualization and management, and more than 150 illustrations of models and equations