Multiscale Modeling in Nanophotonics

Download Multiscale Modeling in Nanophotonics PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1351614061
Total Pages : 274 pages
Book Rating : 4.3/5 (516 download)

DOWNLOAD NOW!


Book Synopsis Multiscale Modeling in Nanophotonics by : Alexander Bagaturyants

Download or read book Multiscale Modeling in Nanophotonics written by Alexander Bagaturyants and published by CRC Press. This book was released on 2017-11-22 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: The idea of theoretically predicting the useful properties of various materials using multiscale simulations has become popular in recent years. Of special interest are nanostructured, organic functional materials, which have a hierarchical structure and are considered materials of the future because of their flexibility and versatility. Their functional properties are inherited from the molecule that lies at the heart of the hierarchical structure. On the other hand, the properties of this functional molecule, in particular its absorption and emission spectra, strongly depend on its interactions with its molecular environment. Therefore, the multiscale simulations used to predict the properties of organic functional materials should be atomistic, that is, they should be based on classical and/or quantum methods that explicitly take into account the molecular structure and intermolecular interactions at the atomic level. This book, written by well-known specialists in theoretical chemistry, focuses on the basics of classical mechanics, quantum chemistry methods used for molecular disordered materials, classical methods of molecular simulations of disordered materials, vibronic interactions, and applications (presented as multiscale strategies for atomistic simulations of photonic materials). It has been edited by Professor Mikhail Alfimov, a renowned Russian scientist, a full member of the Russian Academy of Sciences, Russia, and the founder, first director, and now research supervisor of the Photochemistry Center of the Russian Academy of Science, Russia. Professor Alfimov’s main research interests are in the field of photochemistry and photophysics of molecular and supramolecular systems. The book is a great reference for advanced undergraduate- and graduate-level students of nanotechnology and molecular science and researchers in nano- and molecular science, nanotechnology, chemistry, and physical chemistry, especially those with an interest in functional materials.

Multiscale Modeling in Nanophotonics

Download Multiscale Modeling in Nanophotonics PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1351614053
Total Pages : 245 pages
Book Rating : 4.3/5 (516 download)

DOWNLOAD NOW!


Book Synopsis Multiscale Modeling in Nanophotonics by : Alexander Bagaturyants

Download or read book Multiscale Modeling in Nanophotonics written by Alexander Bagaturyants and published by CRC Press. This book was released on 2017-11-22 with total page 245 pages. Available in PDF, EPUB and Kindle. Book excerpt: The idea of theoretically predicting the useful properties of various materials using multiscale simulations has become popular in recent years. Of special interest are nanostructured, organic functional materials, which have a hierarchical structure and are considered materials of the future because of their flexibility and versatility. Their functional properties are inherited from the molecule that lies at the heart of the hierarchical structure. On the other hand, the properties of this functional molecule, in particular its absorption and emission spectra, strongly depend on its interactions with its molecular environment. Therefore, the multiscale simulations used to predict the properties of organic functional materials should be atomistic, that is, they should be based on classical and/or quantum methods that explicitly take into account the molecular structure and intermolecular interactions at the atomic level. This book, written by well-known specialists in theoretical chemistry, focuses on the basics of classical mechanics, quantum chemistry methods used for molecular disordered materials, classical methods of molecular simulations of disordered materials, vibronic interactions, and applications (presented as multiscale strategies for atomistic simulations of photonic materials). It has been edited by Professor Mikhail Alfimov, a renowned Russian scientist, a full member of the Russian Academy of Sciences, Russia, and the founder, first director, and now research supervisor of the Photochemistry Center of the Russian Academy of Science, Russia. Professor Alfimov’s main research interests are in the field of photochemistry and photophysics of molecular and supramolecular systems. The book is a great reference for advanced undergraduate- and graduate-level students of nanotechnology and molecular science and researchers in nano- and molecular science, nanotechnology, chemistry, and physical chemistry, especially those with an interest in functional materials.

Computational Multiscale Modeling of Multiphase Nanosystems

Download Computational Multiscale Modeling of Multiphase Nanosystems PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1351800264
Total Pages : 426 pages
Book Rating : 4.3/5 (518 download)

DOWNLOAD NOW!


Book Synopsis Computational Multiscale Modeling of Multiphase Nanosystems by : Alexander V. Vakhrushev

Download or read book Computational Multiscale Modeling of Multiphase Nanosystems written by Alexander V. Vakhrushev and published by CRC Press. This book was released on 2017-10-10 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Multiscale Modeling of Multiphase Nanosystems: Theory and Applications presents a systematic description of the theory of multiscale modeling of nanotechnology applications in various fields of science and technology. The problems of computing nanoscale systems at different structural scales are defined, and algorithms are given for their numerical solutions by the quantum/continuum mechanics, molecular dynamics, and mesodynamics methods. Emphasis is given to the processes of the formation, movement, and interaction of nanoparticles; the formation of nanocomposites; and the processes accompanying the application of nanocomposites. The book concentrates on different types of nanosystems: solid, liquid, gaseous, and multi-phase, consisting of various elements interacting with each other, and with other elements of the nanosystem and with the environment. The book includes a large number of examples of numerical modeling of nanosystems. The valuable information presented here will be useful to engineers, researchers, and postgraduate students engaged in the design and research in the field of nanotechnology.

Multiphysics and Multiscale Modeling

Download Multiphysics and Multiscale Modeling PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1498782523
Total Pages : 442 pages
Book Rating : 4.4/5 (987 download)

DOWNLOAD NOW!


Book Synopsis Multiphysics and Multiscale Modeling by : Young W. Kwon

Download or read book Multiphysics and Multiscale Modeling written by Young W. Kwon and published by CRC Press. This book was released on 2015-10-05 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written to appeal to a wide field of engineers and scientists who work on multiscale and multiphysics analysis, Multiphysics and Multiscale Modeling: Techniques and Applications is dedicated to the many computational techniques and methods used to develop man-made systems as well as understand living systems that exist in nature. Presenting a body

Modeling, Characterization and Production of Nanomaterials

Download Modeling, Characterization and Production of Nanomaterials PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 1782422358
Total Pages : 554 pages
Book Rating : 4.7/5 (824 download)

DOWNLOAD NOW!


Book Synopsis Modeling, Characterization and Production of Nanomaterials by : V Tewary

Download or read book Modeling, Characterization and Production of Nanomaterials written by V Tewary and published by Elsevier. This book was released on 2015-03-17 with total page 554 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nano-scale materials have unique electronic, optical, and chemical properties which make them attractive for a new generation of devices. Part one of Modeling, Characterization, and Production of Nanomaterials: Electronics, Photonics and Energy Applications covers modeling techniques incorporating quantum mechanical effects to simulate nanomaterials and devices, such as multiscale modeling and density functional theory. Part two describes the characterization of nanomaterials using diffraction techniques and Raman spectroscopy. Part three looks at the structure and properties of nanomaterials, including their optical properties and atomic behaviour. Part four explores nanofabrication and nanodevices, including the growth of graphene, GaN-based nanorod heterostructures and colloidal quantum dots for applications in nanophotonics and metallic nanoparticles for catalysis applications. Comprehensive coverage of the close connection between modeling and experimental methods for studying a wide range of nanomaterials and nanostructures Focus on practical applications and industry needs, supported by a solid outlining of theoretical background Draws on the expertise of leading researchers in the field of nanomaterials from around the world

Multiscale Materials Modeling for Nanomechanics

Download Multiscale Materials Modeling for Nanomechanics PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9783319815244
Total Pages : 547 pages
Book Rating : 4.8/5 (152 download)

DOWNLOAD NOW!


Book Synopsis Multiscale Materials Modeling for Nanomechanics by : Christopher R. Weinberger

Download or read book Multiscale Materials Modeling for Nanomechanics written by Christopher R. Weinberger and published by Springer. This book was released on 2018-06-12 with total page 547 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a unique combination of chapters that together provide a practical introduction to multiscale modeling applied to nanoscale materials mechanics. The goal of this book is to present a balanced treatment of both the theory of the methodology, as well as some practical aspects of conducting the simulations and models. The first half of the book covers some fundamental modeling and simulation techniques ranging from ab-inito methods to the continuum scale. Included in this set of methods are several different concurrent multiscale methods for bridging time and length scales applicable to mechanics at the nanoscale regime. The second half of the book presents a range of case studies from a varied selection of research groups focusing either on a the application of multiscale modeling to a specific nanomaterial, or novel analysis techniques aimed at exploring nanomechanics. Readers are also directed to helpful sites and other resources throughout the book where the simulation codes and methodologies discussed herein can be accessed. Emphasis on the practicality of the detailed techniques is especially felt in the latter half of the book, which is dedicated to specific examples to study nanomechanics and multiscale materials behavior. An instructive avenue for learning how to effectively apply these simulation tools to solve nanomechanics problems is to study previous endeavors. Therefore, each chapter is written by a unique team of experts who have used multiscale materials modeling to solve a practical nanomechanics problem. These chapters provide an extensive picture of the multiscale materials landscape from problem statement through the final results and outlook, providing readers with a roadmap for incorporating these techniques into their own research.

Multiscale Modeling

Download Multiscale Modeling PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1439810400
Total Pages : 310 pages
Book Rating : 4.4/5 (398 download)

DOWNLOAD NOW!


Book Synopsis Multiscale Modeling by : Pedro Derosa

Download or read book Multiscale Modeling written by Pedro Derosa and published by CRC Press. This book was released on 2010-12-09 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: While the relevant features and properties of nanosystems necessarily depend on nanoscopic details, their performance resides in the macroscopic world. To rationally develop and accurately predict performance of these systems we must tackle problems where multiple length and time scales are coupled. Rather than forcing a single modeling approach to

Computational Nanophotonics

Download Computational Nanophotonics PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1466558784
Total Pages : 541 pages
Book Rating : 4.4/5 (665 download)

DOWNLOAD NOW!


Book Synopsis Computational Nanophotonics by : Sarhan Musa

Download or read book Computational Nanophotonics written by Sarhan Musa and published by CRC Press. This book was released on 2018-10-08 with total page 541 pages. Available in PDF, EPUB and Kindle. Book excerpt: This reference offers tools for engineers, scientists, biologists, and others working with the computational techniques of nanophotonics. It introduces the key concepts of computational methods in a manner that is easily digestible for newcomers to the field. The book also examines future applications of nanophotonics in the technical industry and covers new developments and interdisciplinary research in engineering, science, and medicine. It provides an overview of the key computational nanophotonics and describes the technologies with an emphasis on how they work and their key benefits.

Multiscale Modeling of Complex Molecular Structure and Dynamics with MBN Explorer

Download Multiscale Modeling of Complex Molecular Structure and Dynamics with MBN Explorer PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9783319858227
Total Pages : 451 pages
Book Rating : 4.8/5 (582 download)

DOWNLOAD NOW!


Book Synopsis Multiscale Modeling of Complex Molecular Structure and Dynamics with MBN Explorer by : Ilia A. Solov’yov

Download or read book Multiscale Modeling of Complex Molecular Structure and Dynamics with MBN Explorer written by Ilia A. Solov’yov and published by Springer. This book was released on 2018-07-29 with total page 451 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces readers to MesoBioNano (MBN) Explorer – a multi-purpose software package designed to model molecular systems at various levels of size and complexity. In addition, it presents a specially designed multi-task toolkit and interface – the MBN Studio – which enables the set-up of input files, controls the simulations, and supports the subsequent visualization and analysis of the results obtained. The book subsequently provides a systematic description of the capabilities of this universal and powerful software package within the framework of computational molecular science, and guides readers through its applications in numerous areas of research in bio- and chemical physics and material science – ranging from the nano- to the mesoscale. MBN Explorer is particularly suited to computing the system’s energy, to optimizing molecular structure, and to exploring the various facets of molecular and random walk dynamics. The package allows the use of a broad variety of interatomic potentials and can, e.g., be configured to select any subset of a molecular system as rigid fragments, whenever a significant reduction in the number of dynamical degrees of freedom is required for computational practicalities. MBN Studio enables users to easily construct initial geometries for the molecular, liquid, crystalline, gaseous and hybrid systems that serve as input for the subsequent simulations of their physical and chemical properties using MBN Explorer. Despite its universality, the computational efficiency of MBN Explorer is comparable to that of other, more specialized software packages, making it a viable multi-purpose alternative for the computational modeling of complex molecular systems. A number of detailed case studies presented in the second part of this book demonstrate MBN Explorer’s usefulness and efficiency in the fields of atomic clusters and nanoparticles, biomolecular systems, nanostructured materials, composite materials and hybrid systems, crystals, liquids and gases, as well as in providing modeling support for novel and emerging technologies. Last but not least, with the release of the 3rd edition of MBN Explorer in spring 2017, a free trial version will be available from the MBN Research Center website (mbnresearch.com).

Multiscale Modeling in Solid Mechanics

Download Multiscale Modeling in Solid Mechanics PDF Online Free

Author :
Publisher : Imperial College Press
ISBN 13 : 1848163088
Total Pages : 349 pages
Book Rating : 4.8/5 (481 download)

DOWNLOAD NOW!


Book Synopsis Multiscale Modeling in Solid Mechanics by : Ugo Galvanetto

Download or read book Multiscale Modeling in Solid Mechanics written by Ugo Galvanetto and published by Imperial College Press. This book was released on 2010 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique volume presents the state of the art in the field of multiscale modeling in solid mechanics, with particular emphasis on computational approaches. For the first time, contributions from both leading experts in the field and younger promising researchers are combined to give a comprehensive description of the recently proposed techniques and the engineering problems tackled using these techniques. The book begins with a detailed introduction to the theories on which different multiscale approaches are based, with regards to linear Homogenisation as well as various nonlinear approaches. It then presents advanced applications of multiscale approaches applied to nonlinear mechanical problems. Finally, the novel topic of materials with self-similar structure is discussed. Sample Chapter(s). Chapter 1: Computational Homogenisation for Non-Linear Heterogeneous Solids (808 KB). Contents: Computational Homogenisation for Non-Linear Heterogeneous Solids (V G Kouznetsova et al.); Two-Scale Asymptotic Homogenisation-Based Finite Element Analysis of Composite Materials (Q-Z Xiao & B L Karihaloo); Multi-Scale Boundary Element Modelling of Material Degradation and Fracture (G K Sfantos & M H Aliabadi); Non-Uniform Transformation Field Analysis: A Reduced Model for Multiscale Non-Linear Problems in Solid Mechanics (J-C Michel & P Suquet); Multiscale Approach for the Thermomechanical Analysis of Hierarchical Structures (M J Lefik et al.); Recent Advances in Masonry Modelling: Micro-Modelling and Homogenisation (P B Louren o); Mechanics of Materials with Self-Similar Hierarchical Microstructure (R C Picu & M A Soare). Readership: Researchers and academics in the field of heterogeneous materials and mechanical engineering; professionals in aeronautical engineering and materials science.

Modeling, Characterization, and Production of Nanomaterials

Download Modeling, Characterization, and Production of Nanomaterials PDF Online Free

Author :
Publisher : Woodhead Publishing
ISBN 13 : 0128199199
Total Pages : 628 pages
Book Rating : 4.1/5 (281 download)

DOWNLOAD NOW!


Book Synopsis Modeling, Characterization, and Production of Nanomaterials by : Vinod Tewary

Download or read book Modeling, Characterization, and Production of Nanomaterials written by Vinod Tewary and published by Woodhead Publishing. This book was released on 2022-11-09 with total page 628 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nano-scale materials have unique electronic, optical, and chemical properties that make them attractive for a new generation of devices. In the second edition of Modeling, Characterization, and Production of Nanomaterials: Electronics, Photonics, and Energy Applications, leading experts review the latest advances in research in the understanding, prediction, and methods of production of current and emerging nanomaterials for key applications. The chapters in the first half of the book cover applications of different modeling techniques, such as Green’s function-based multiscale modeling and density functional theory, to simulate nanomaterials and their structures, properties, and devices. The chapters in the second half describe the characterization of nanomaterials using advanced material characterization techniques, such as high-resolution electron microscopy, near-field scanning microwave microscopy, confocal micro-Raman spectroscopy, thermal analysis of nanoparticles, and applications of nanomaterials in areas such as electronics, solar energy, catalysis, and sensing. The second edition includes emerging relevant nanomaterials, applications, and updated modeling and characterization techniques and new understanding of nanomaterials. Covers the close connection between modeling and experimental methods for studying a wide range of nanomaterials and nanostructures Focuses on practical applications and industry needs through a solid outlining of the theoretical background Includes emerging nanomaterials and their applications in spintronics and sensing

Nano/Microscale Heat Transfer

Download Nano/Microscale Heat Transfer PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030450392
Total Pages : 780 pages
Book Rating : 4.0/5 (34 download)

DOWNLOAD NOW!


Book Synopsis Nano/Microscale Heat Transfer by : Zhuomin M. Zhang

Download or read book Nano/Microscale Heat Transfer written by Zhuomin M. Zhang and published by Springer Nature. This book was released on 2020-06-23 with total page 780 pages. Available in PDF, EPUB and Kindle. Book excerpt: This substantially updated and augmented second edition adds over 200 pages of text covering and an array of newer developments in nanoscale thermal transport. In Nano/Microscale Heat Transfer, 2nd edition, Dr. Zhang expands his classroom-proven text to incorporate thermal conductivity spectroscopy, time-domain and frequency-domain thermoreflectance techniques, quantum size effect on specific heat, coherent phonon, minimum thermal conductivity, interface thermal conductance, thermal interface materials, 2D sheet materials and their unique thermal properties, soft materials, first-principles simulation, hyperbolic metamaterials, magnetic polaritons, and new near-field radiation experiments and numerical simulations. Informed by over 12 years use, the author’s research experience, and feedback from teaching faculty, the book has been reorganized in many sections and enriched with more examples and homework problems. Solutions for selected problems are also available to qualified faculty via a password-protected website.• Substantially updates and augments the widely adopted original edition, adding over 200 pages and many new illustrations;• Incorporates student and faculty feedback from a decade of classroom use;• Elucidates concepts explained with many examples and illustrations;• Supports student application of theory with 300 homework problems;• Maximizes reader understanding of micro/nanoscale thermophysical properties and processes and how to apply them to thermal science and engineering;• Features MATLAB codes for working with size and temperature effects on thermal conductivity, specific heat of nanostructures, thin-film optics, RCWA, and near-field radiation.

Nano and Cell Mechanics

Download Nano and Cell Mechanics PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 111848259X
Total Pages : 519 pages
Book Rating : 4.1/5 (184 download)

DOWNLOAD NOW!


Book Synopsis Nano and Cell Mechanics by : Horacio D. Espinosa

Download or read book Nano and Cell Mechanics written by Horacio D. Espinosa and published by John Wiley & Sons. This book was released on 2012-12-12 with total page 519 pages. Available in PDF, EPUB and Kindle. Book excerpt: Research in nano and cell mechanics has received much attention from the scientific community as a result of society needs and government initiatives to accelerate developments in materials, manufacturing, electronics, medicine and healthcare, energy, and the environment. Engineers and scientists are currently engaging in increasingly complex scientific problems that require interdisciplinary approaches. In this regard, studies in this field draw from fundamentals in atomistic scale phenomena, biology, statistical and continuum mechanics, and multiscale modeling and experimentation. As a result, contributions in these areas are spread over a large number of specialized journals, which prompted the Editors to assemble this book. Nano and Cell Mechanics: Fundamentals and Frontiers brings together many of the new developments in the field for the first time, and covers fundamentals and frontiers in mechanics to accelerate developments in nano- and bio-technologies. Key features: • Provides an overview of recent advances in nano and cell mechanics. • Covers experimental, analytical, and computational tools used to investigate biological and nanoscale phenomena. • Covers fundamentals and frontiers in mechanics to accelerate developments in nano- and bio-technologies. • Presents multiscale-multiphysics modeling and experimentation techniques. • Examines applications in materials, manufacturing, electronics, medicine and healthcare. Nano and Cell Mechanics: Fundamentals and Frontiers is written by internationally recognized experts in theoretical and applied mechanics, applied physics, chemistry, and biology. It is an invaluable reference for graduate students of nano- and bio-technologies, researchers in academia and industry who are working in nano and cell mechanics, and practitioners who are interested in learning about the latest analysis tools. The book can also serve as a text for graduate courses in theoretical and applied mechanics, mechanical engineering, materials science, and applied physics.

Multiscale Modelling of Advanced Materials

Download Multiscale Modelling of Advanced Materials PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9811522677
Total Pages : 205 pages
Book Rating : 4.8/5 (115 download)

DOWNLOAD NOW!


Book Synopsis Multiscale Modelling of Advanced Materials by : Runa Kumari

Download or read book Multiscale Modelling of Advanced Materials written by Runa Kumari and published by Springer Nature. This book was released on 2020-02-08 with total page 205 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume covers the recent advances and research on the modeling and simulation of materials. The primary aim is to take the reader through the mathematical analysis to the theories of electricity and magnetism using multiscale modelling, covering a variety of numerical methods such as finite difference time domain (FDTD), finite element method (FEM) and method of moments. The book also introduces the multiscale Green’s function (GF) method for static and dynamic modelling and simulation results of modern advanced nanomaterials, particularly the two-dimensional (2D) materials. This book will be of interest to researchers and industry professionals working on advanced materials.

Fourier Modal Method and Its Applications in Computational Nanophotonics

Download Fourier Modal Method and Its Applications in Computational Nanophotonics PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1420088394
Total Pages : 326 pages
Book Rating : 4.4/5 (2 download)

DOWNLOAD NOW!


Book Synopsis Fourier Modal Method and Its Applications in Computational Nanophotonics by : Hwi Kim

Download or read book Fourier Modal Method and Its Applications in Computational Nanophotonics written by Hwi Kim and published by CRC Press. This book was released on 2017-12-19 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt: Most available books on computational electrodynamics are focused on FDTD, FEM, or other specific technique developed in microwave engineering. In contrast, Fourier Modal Method and Its Applications in Computational Nanophotonics is a complete guide to the principles and detailed mathematics of the up-to-date Fourier modal method of optical analysis. It takes readers through the implementation of MATLAB® codes for practical modeling of well-known and promising nanophotonic structures. The authors also address the limitations of the Fourier modal method. Features Provides a comprehensive guide to the principles, methods, and mathematics of the Fourier modal method Explores the emerging field of computational nanophotonics Presents clear, step-by-step, practical explanations on how to use the Fourier modal method for photonics and nanophotonics applications Includes the necessary MATLAB codes, enabling readers to construct their own code Using this book, graduate students and researchers can learn about nanophotonics simulations through a comprehensive treatment of the mathematics underlying the Fourier modal method and examples of practical problems solved with MATLAB codes.

Handbook of Materials Modeling

Download Handbook of Materials Modeling PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1402032862
Total Pages : 2903 pages
Book Rating : 4.4/5 (2 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Materials Modeling by : Sidney Yip

Download or read book Handbook of Materials Modeling written by Sidney Yip and published by Springer Science & Business Media. This book was released on 2007-11-17 with total page 2903 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first reference of its kind in the rapidly emerging field of computational approachs to materials research, this is a compendium of perspective-providing and topical articles written to inform students and non-specialists of the current status and capabilities of modelling and simulation. From the standpoint of methodology, the development follows a multiscale approach with emphasis on electronic-structure, atomistic, and mesoscale methods, as well as mathematical analysis and rate processes. Basic models are treated across traditional disciplines, not only in the discussion of methods but also in chapters on crystal defects, microstructure, fluids, polymers and soft matter. Written by authors who are actively participating in the current development, this collection of 150 articles has the breadth and depth to be a major contributor toward defining the field of computational materials. In addition, there are 40 commentaries by highly respected researchers, presenting various views that should interest the future generations of the community. Subject Editors: Martin Bazant, MIT; Bruce Boghosian, Tufts University; Richard Catlow, Royal Institution; Long-Qing Chen, Pennsylvania State University; William Curtin, Brown University; Tomas Diaz de la Rubia, Lawrence Livermore National Laboratory; Nicolas Hadjiconstantinou, MIT; Mark F. Horstemeyer, Mississippi State University; Efthimios Kaxiras, Harvard University; L. Mahadevan, Harvard University; Dimitrios Maroudas, University of Massachusetts; Nicola Marzari, MIT; Horia Metiu, University of California Santa Barbara; Gregory C. Rutledge, MIT; David J. Srolovitz, Princeton University; Bernhardt L. Trout, MIT; Dieter Wolf, Argonne National Laboratory.

Computational Finite Element Methods in Nanotechnology

Download Computational Finite Element Methods in Nanotechnology PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1439893233
Total Pages : 647 pages
Book Rating : 4.4/5 (398 download)

DOWNLOAD NOW!


Book Synopsis Computational Finite Element Methods in Nanotechnology by : Sarhan M. Musa

Download or read book Computational Finite Element Methods in Nanotechnology written by Sarhan M. Musa and published by CRC Press. This book was released on 2012-10-19 with total page 647 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Finite Element Methods in Nanotechnology demonstrates the capabilities of finite element methods in nanotechnology for a range of fields. Bringing together contributions from researchers around the world, it covers key concepts as well as cutting-edge research and applications to inspire new developments and future interdisciplinary research. In particular, it emphasizes the importance of finite element methods (FEMs) for computational tools in the development of efficient nanoscale systems. The book explores a variety of topics, including: A novel FE-based thermo-electrical-mechanical-coupled model to study mechanical stress, temperature, and electric fields in nano- and microelectronics The integration of distributed element, lumped element, and system-level methods for the design, modeling, and simulation of nano- and micro-electromechanical systems (N/MEMS) Challenges in the simulation of nanorobotic systems and macro-dimensions The simulation of structures and processes such as dislocations, growth of epitaxial films, and precipitation Modeling of self-positioning nanostructures, nanocomposites, and carbon nanotubes and their composites Progress in using FEM to analyze the electric field formed in needleless electrospinning How molecular dynamic (MD) simulations can be integrated into the FEM Applications of finite element analysis in nanomaterials and systems used in medicine, dentistry, biotechnology, and other areas The book includes numerous examples and case studies, as well as recent applications of microscale and nanoscale modeling systems with FEMs using COMSOL Multiphysics® and MATLAB®. A one-stop reference for professionals, researchers, and students, this is also an accessible introduction to computational FEMs in nanotechnology for those new to the field.