Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Modeling Decision For Artificial Intelligence
Download Modeling Decision For Artificial Intelligence full books in PDF, epub, and Kindle. Read online Modeling Decision For Artificial Intelligence ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Decision Theory Models for Applications in Artificial Intelligence: Concepts and Solutions by : Sucar, L. Enrique
Download or read book Decision Theory Models for Applications in Artificial Intelligence: Concepts and Solutions written by Sucar, L. Enrique and published by IGI Global. This book was released on 2011-10-31 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the goals of artificial intelligence (AI) is creating autonomous agents that must make decisions based on uncertain and incomplete information. The goal is to design rational agents that must take the best action given the information available and their goals. Decision Theory Models for Applications in Artificial Intelligence: Concepts and Solutions provides an introduction to different types of decision theory techniques, including MDPs, POMDPs, Influence Diagrams, and Reinforcement Learning, and illustrates their application in artificial intelligence. This book provides insights into the advantages and challenges of using decision theory models for developing intelligent systems.
Book Synopsis Interpretable Machine Learning by : Christoph Molnar
Download or read book Interpretable Machine Learning written by Christoph Molnar and published by Lulu.com. This book was released on 2020 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.
Book Synopsis Modeling Decisions for Artificial Intelligence by : Vicenç Torra
Download or read book Modeling Decisions for Artificial Intelligence written by Vicenç Torra and published by Springer Science & Business Media. This book was released on 2005-07-14 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the Second International Conference on Modeling Decisions for Artificial Intelligence, MDAI 2005, held in Tsukuba, Japan in July 2005. The 40 revised full papers presented together with an introduction by the editors and 4 invited lectures were thoroughly reviewed and selected from 118 submissions. The papers are devoted to theory and tools for modeling decisions, as well as applications that encompass decision making processes and information fusion techniques. Special focus is given to applications related with risk, security and safety.
Book Synopsis Modeling Decisions for Artificial Intelligence by : Yasuo Narukawa
Download or read book Modeling Decisions for Artificial Intelligence written by Yasuo Narukawa and published by Springer. This book was released on 2007-08-21 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: Decision modeling is a key area in the developing field of AI, and this timely work connects researchers and professionals with the very latest research. It constitutes the refereed proceedings of the 4th International Conference on Modeling Decisions for Artificial Intelligence, held in Kitakyushu, Japan, in August 2007. The 42 revised full papers presented together with 4 invited lectures are devoted to theory and tools, as well as applications.
Book Synopsis Markov Decision Processes in Artificial Intelligence by : Olivier Sigaud
Download or read book Markov Decision Processes in Artificial Intelligence written by Olivier Sigaud and published by John Wiley & Sons. This book was released on 2013-03-04 with total page 367 pages. Available in PDF, EPUB and Kindle. Book excerpt: Markov Decision Processes (MDPs) are a mathematical framework for modeling sequential decision problems under uncertainty as well as reinforcement learning problems. Written by experts in the field, this book provides a global view of current research using MDPs in artificial intelligence. It starts with an introductory presentation of the fundamental aspects of MDPs (planning in MDPs, reinforcement learning, partially observable MDPs, Markov games and the use of non-classical criteria). It then presents more advanced research trends in the field and gives some concrete examples using illustrative real life applications.
Book Synopsis Modeling Decisions for Artificial Intelligence by : Vicenc Torra
Download or read book Modeling Decisions for Artificial Intelligence written by Vicenc Torra and published by Springer. This book was released on 2015-08-31 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the proceedings of the 12th International Conference on Modeling Decisions for Artificial Intelligence, MDAI 2015, held in Skövde, Sweden, in September 2015. The 18 revised full papers presented were carefully reviewed and selected from 38 submissions. They discuss theory and tools for modeling decisions, as well as applications that encompass decision making processes and information fusion techniques.
Book Synopsis Modeling Decisions for Artificial Intelligence by : Vincenc Torra
Download or read book Modeling Decisions for Artificial Intelligence written by Vincenc Torra and published by Springer. This book was released on 2012-11-07 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 9th International Conference on Modeling Decisions for Artificial Intelligence, MDAI 2012, held in Girona, Catalonia, Spain, in November 2012. The 32 revised full papers were carefully reviewed and selected from 49 submissions and are presented with 4 plenary talks. The papers are organized in topical sections on aggregation operators, integrals, data privacy and security, reasoning, applications, and clustering and similarity.
Book Synopsis Modeling Decisions by : Vicenç Torra
Download or read book Modeling Decisions written by Vicenç Torra and published by Springer Science & Business Media. This book was released on 2007-05-11 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the underlying science and application issues related to aggregation operators, focusing on tools used in practical applications that involve numerical information. It will thus be required reading for engineers, statisticians and computer scientists of all kinds. Starting with detailed introductions to information fusion and integration, measurement and probability theory, fuzzy sets, and functional equations, the authors then cover numerous topics in detail, including the synthesis of judgements, fuzzy measures, weighted means and fuzzy integrals.
Book Synopsis Responsible AI and Analytics for an Ethical and Inclusive Digitized Society by : Denis Dennehy
Download or read book Responsible AI and Analytics for an Ethical and Inclusive Digitized Society written by Denis Dennehy and published by Springer Nature. This book was released on 2021-08-25 with total page 794 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume constitutes the proceedings of the 20th IFIP WG 6.11 Conference on e-Business, e-Services, and e-Society, I3E 2021, held in Galway, Ireland, in September 2021.* The total of 57 full and 8 short papers presented in these volumes were carefully reviewed and selected from 141 submissions. The papers are organized in the following topical sections: AI for Digital Transformation and Public Good; AI & Analytics Decision Making; AI Philosophy, Ethics & Governance; Privacy & Transparency in a Digitized Society; Digital Enabled Sustainable Organizations and Societies; Digital Technologies and Organizational Capabilities; Digitized Supply Chains; Customer Behavior and E-business; Blockchain; Information Systems Development; Social Media & Analytics; and Teaching & Learning. *The conference was held virtually due to the COVID-19 pandemic.
Book Synopsis Universal Artificial Intelligence by : Marcus Hutter
Download or read book Universal Artificial Intelligence written by Marcus Hutter and published by Springer Science & Business Media. This book was released on 2005-12-29 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: Personal motivation. The dream of creating artificial devices that reach or outperform human inteUigence is an old one. It is also one of the dreams of my youth, which have never left me. What makes this challenge so interesting? A solution would have enormous implications on our society, and there are reasons to believe that the AI problem can be solved in my expected lifetime. So, it's worth sticking to it for a lifetime, even if it takes 30 years or so to reap the benefits. The AI problem. The science of artificial intelligence (AI) may be defined as the construction of intelligent systems and their analysis. A natural definition of a system is anything that has an input and an output stream. Intelligence is more complicated. It can have many faces like creativity, solving prob lems, pattern recognition, classification, learning, induction, deduction, build ing analogies, optimization, surviving in an environment, language processing, and knowledge. A formal definition incorporating every aspect of intelligence, however, seems difficult. Most, if not all known facets of intelligence can be formulated as goal driven or, more precisely, as maximizing some utility func tion. It is, therefore, sufficient to study goal-driven AI; e. g. the (biological) goal of animals and humans is to survive and spread. The goal of AI systems should be to be useful to humans.
Book Synopsis The Economics of Artificial Intelligence by : Ajay Agrawal
Download or read book The Economics of Artificial Intelligence written by Ajay Agrawal and published by University of Chicago Press. This book was released on 2024-03-05 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: A timely investigation of the potential economic effects, both realized and unrealized, of artificial intelligence within the United States healthcare system. In sweeping conversations about the impact of artificial intelligence on many sectors of the economy, healthcare has received relatively little attention. Yet it seems unlikely that an industry that represents nearly one-fifth of the economy could escape the efficiency and cost-driven disruptions of AI. The Economics of Artificial Intelligence: Health Care Challenges brings together contributions from health economists, physicians, philosophers, and scholars in law, public health, and machine learning to identify the primary barriers to entry of AI in the healthcare sector. Across original papers and in wide-ranging responses, the contributors analyze barriers of four types: incentives, management, data availability, and regulation. They also suggest that AI has the potential to improve outcomes and lower costs. Understanding both the benefits of and barriers to AI adoption is essential for designing policies that will affect the evolution of the healthcare system.
Book Synopsis Research Directions in Computational Mechanics by : National Research Council
Download or read book Research Directions in Computational Mechanics written by National Research Council and published by National Academies Press. This book was released on 1991-02-01 with total page 145 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational mechanics is a scientific discipline that marries physics, computers, and mathematics to emulate natural physical phenomena. It is a technology that allows scientists to study and predict the performance of various productsâ€"important for research and development in the industrialized world. This book describes current trends and future research directions in computational mechanics in areas where gaps exist in current knowledge and where major advances are crucial to continued technological developments in the United States.
Book Synopsis Artificial General Intelligence by : Jordi Bieger
Download or read book Artificial General Intelligence written by Jordi Bieger and published by Springer. This book was released on 2015-07-14 with total page 425 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 8th International Conference on Artificial General Intelligence, AGI 2015, held in Berlin, Germany in July 2015. The 41 papers were carefully reviewed and selected from 72 submissions. The AGI conference series has played and continues to play, a significant role in this resurgence of research on artificial intelligence in the deeper, original sense of the term of “artificial intelligence”. The conferences encourage interdisciplinary research based on different understandings of intelligence and exploring different approaches. AGI research differs from the ordinary AI research by stressing on the versatility and wholeness of intelligence and by carrying out the engineering practice according to an outline of a system comparable to the human mind in a certain sense.
Book Synopsis Artificial Intelligence in Behavioral and Mental Health Care by : David D. Luxton
Download or read book Artificial Intelligence in Behavioral and Mental Health Care written by David D. Luxton and published by Academic Press. This book was released on 2015-09-10 with total page 309 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial Intelligence in Behavioral and Mental Health Care summarizes recent advances in artificial intelligence as it applies to mental health clinical practice. Each chapter provides a technical description of the advance, review of application in clinical practice, and empirical data on clinical efficacy. In addition, each chapter includes a discussion of practical issues in clinical settings, ethical considerations, and limitations of use. The book encompasses AI based advances in decision-making, in assessment and treatment, in providing education to clients, robot assisted task completion, and the use of AI for research and data gathering. This book will be of use to mental health practitioners interested in learning about, or incorporating AI advances into their practice and for researchers interested in a comprehensive review of these advances in one source. - Summarizes AI advances for use in mental health practice - Includes advances in AI based decision-making and consultation - Describes AI applications for assessment and treatment - Details AI advances in robots for clinical settings - Provides empirical data on clinical efficacy - Explores practical issues of use in clinical settings
Book Synopsis Planning with Markov Decision Processes by : Mausam
Download or read book Planning with Markov Decision Processes written by Mausam and published by Morgan & Claypool Publishers. This book was released on 2012 with total page 213 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides a concise introduction to the use of Markov Decision Processes for solving probabilistic planning problems, with an emphasis on the algorithmic perspective. It covers the whole spectrum of the field, from the basics to state-of-the-art optimal and approximation algorithms.
Book Synopsis Learning to Learn by : Sebastian Thrun
Download or read book Learning to Learn written by Sebastian Thrun and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past three decades or so, research on machine learning and data mining has led to a wide variety of algorithms that learn general functions from experience. As machine learning is maturing, it has begun to make the successful transition from academic research to various practical applications. Generic techniques such as decision trees and artificial neural networks, for example, are now being used in various commercial and industrial applications. Learning to Learn is an exciting new research direction within machine learning. Similar to traditional machine-learning algorithms, the methods described in Learning to Learn induce general functions from experience. However, the book investigates algorithms that can change the way they generalize, i.e., practice the task of learning itself, and improve on it. To illustrate the utility of learning to learn, it is worthwhile comparing machine learning with human learning. Humans encounter a continual stream of learning tasks. They do not just learn concepts or motor skills, they also learn bias, i.e., they learn how to generalize. As a result, humans are often able to generalize correctly from extremely few examples - often just a single example suffices to teach us a new thing. A deeper understanding of computer programs that improve their ability to learn can have a large practical impact on the field of machine learning and beyond. In recent years, the field has made significant progress towards a theory of learning to learn along with practical new algorithms, some of which led to impressive results in real-world applications. Learning to Learn provides a survey of some of the most exciting new research approaches, written by leading researchers in the field. Its objective is to investigate the utility and feasibility of computer programs that can learn how to learn, both from a practical and a theoretical point of view.
Book Synopsis Explainable Artificial Intelligence Based on Neuro-Fuzzy Modeling with Applications in Finance by : Tom Rutkowski
Download or read book Explainable Artificial Intelligence Based on Neuro-Fuzzy Modeling with Applications in Finance written by Tom Rutkowski and published by Springer Nature. This book was released on 2021-06-07 with total page 167 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book proposes techniques, with an emphasis on the financial sector, which will make recommendation systems both accurate and explainable. The vast majority of AI models work like black box models. However, in many applications, e.g., medical diagnosis or venture capital investment recommendations, it is essential to explain the rationale behind AI systems decisions or recommendations. Therefore, the development of artificial intelligence cannot ignore the need for interpretable, transparent, and explainable models. First, the main idea of the explainable recommenders is outlined within the background of neuro-fuzzy systems. In turn, various novel recommenders are proposed, each characterized by achieving high accuracy with a reasonable number of interpretable fuzzy rules. The main part of the book is devoted to a very challenging problem of stock market recommendations. An original concept of the explainable recommender, based on patterns from previous transactions, is developed; it recommends stocks that fit the strategy of investors, and its recommendations are explainable for investment advisers.