Efficient Processing of Deep Neural Networks

Download Efficient Processing of Deep Neural Networks PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031017668
Total Pages : 254 pages
Book Rating : 4.0/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Efficient Processing of Deep Neural Networks by : Vivienne Sze

Download or read book Efficient Processing of Deep Neural Networks written by Vivienne Sze and published by Springer Nature. This book was released on 2022-05-31 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a structured treatment of the key principles and techniques for enabling efficient processing of deep neural networks (DNNs). DNNs are currently widely used for many artificial intelligence (AI) applications, including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Therefore, techniques that enable efficient processing of deep neural networks to improve key metrics—such as energy-efficiency, throughput, and latency—without sacrificing accuracy or increasing hardware costs are critical to enabling the wide deployment of DNNs in AI systems. The book includes background on DNN processing; a description and taxonomy of hardware architectural approaches for designing DNN accelerators; key metrics for evaluating and comparing different designs; features of DNN processing that are amenable to hardware/algorithm co-design to improve energy efficiency and throughput; and opportunities for applying new technologies. Readers will find a structured introduction to the field as well as formalization and organization of key concepts from contemporary work that provide insights that may spark new ideas.

TinyML

Download TinyML PDF Online Free

Author :
Publisher : O'Reilly Media
ISBN 13 : 1492052019
Total Pages : 504 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis TinyML by : Pete Warden

Download or read book TinyML written by Pete Warden and published by O'Reilly Media. This book was released on 2019-12-16 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep learning networks are getting smaller. Much smaller. The Google Assistant team can detect words with a model just 14 kilobytes in size—small enough to run on a microcontroller. With this practical book you’ll enter the field of TinyML, where deep learning and embedded systems combine to make astounding things possible with tiny devices. Pete Warden and Daniel Situnayake explain how you can train models small enough to fit into any environment. Ideal for software and hardware developers who want to build embedded systems using machine learning, this guide walks you through creating a series of TinyML projects, step-by-step. No machine learning or microcontroller experience is necessary. Build a speech recognizer, a camera that detects people, and a magic wand that responds to gestures Work with Arduino and ultra-low-power microcontrollers Learn the essentials of ML and how to train your own models Train models to understand audio, image, and accelerometer data Explore TensorFlow Lite for Microcontrollers, Google’s toolkit for TinyML Debug applications and provide safeguards for privacy and security Optimize latency, energy usage, and model and binary size

Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing

Download Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031399323
Total Pages : 481 pages
Book Rating : 4.0/5 (313 download)

DOWNLOAD NOW!


Book Synopsis Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing by : Sudeep Pasricha

Download or read book Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing written by Sudeep Pasricha and published by Springer Nature. This book was released on 2023-10-09 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents recent advances towards the goal of enabling efficient implementation of machine learning models on resource-constrained systems, covering different application domains. The focus is on presenting interesting and new use cases of applying machine learning to innovative application domains, exploring the efficient hardware design of efficient machine learning accelerators, memory optimization techniques, illustrating model compression and neural architecture search techniques for energy-efficient and fast execution on resource-constrained hardware platforms, and understanding hardware-software codesign techniques for achieving even greater energy, reliability, and performance benefits. Discusses efficient implementation of machine learning in embedded, CPS, IoT, and edge computing; Offers comprehensive coverage of hardware design, software design, and hardware/software co-design and co-optimization; Describes real applications to demonstrate how embedded, CPS, IoT, and edge applications benefit from machine learning.

FPGA Implementations of Neural Networks

Download FPGA Implementations of Neural Networks PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387284877
Total Pages : 365 pages
Book Rating : 4.3/5 (872 download)

DOWNLOAD NOW!


Book Synopsis FPGA Implementations of Neural Networks by : Amos R. Omondi

Download or read book FPGA Implementations of Neural Networks written by Amos R. Omondi and published by Springer Science & Business Media. This book was released on 2006-10-04 with total page 365 pages. Available in PDF, EPUB and Kindle. Book excerpt: During the 1980s and early 1990s there was signi?cant work in the design and implementation of hardware neurocomputers. Nevertheless, most of these efforts may be judged to have been unsuccessful: at no time have have ha- ware neurocomputers been in wide use. This lack of success may be largely attributed to the fact that earlier work was almost entirely aimed at developing custom neurocomputers, based on ASIC technology, but for such niche - eas this technology was never suf?ciently developed or competitive enough to justify large-scale adoption. On the other hand, gate-arrays of the period m- tioned were never large enough nor fast enough for serious arti?cial-neur- network (ANN) applications. But technology has now improved: the capacity and performance of current FPGAs are such that they present a much more realistic alternative. Consequently neurocomputers based on FPGAs are now a much more practical proposition than they have been in the past. This book summarizes some work towards this goal and consists of 12 papers that were selected, after review, from a number of submissions. The book is nominally divided into three parts: Chapters 1 through 4 deal with foundational issues; Chapters 5 through 11 deal with a variety of implementations; and Chapter 12 looks at the lessons learned from a large-scale project and also reconsiders design issues in light of current and future technology.

FPGAs for Software Programmers

Download FPGAs for Software Programmers PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319264087
Total Pages : 331 pages
Book Rating : 4.3/5 (192 download)

DOWNLOAD NOW!


Book Synopsis FPGAs for Software Programmers by : Dirk Koch

Download or read book FPGAs for Software Programmers written by Dirk Koch and published by Springer. This book was released on 2016-06-17 with total page 331 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book makes powerful Field Programmable Gate Array (FPGA) and reconfigurable technology accessible to software engineers by covering different state-of-the-art high-level synthesis approaches (e.g., OpenCL and several C-to-gates compilers). It introduces FPGA technology, its programming model, and how various applications can be implemented on FPGAs without going through low-level hardware design phases. Readers will get a realistic sense for problems that are suited for FPGAs and how to implement them from a software designer’s point of view. The authors demonstrate that FPGAs and their programming model reflect the needs of stream processing problems much better than traditional CPU or GPU architectures, making them well-suited for a wide variety of systems, from embedded systems performing sensor processing to large setups for Big Data number crunching. This book serves as an invaluable tool for software designers and FPGA design engineers who are interested in high design productivity through behavioural synthesis, domain-specific compilation, and FPGA overlays. Introduces FPGA technology to software developers by giving an overview of FPGA programming models and design tools, as well as various application examples; Provides a holistic analysis of the topic and enables developers to tackle the architectural needs for Big Data processing with FPGAs; Explains the reasons for the energy efficiency and performance benefits of FPGA processing; Provides a user-oriented approach and a sense for where and how to apply FPGA technology.

Real-time System Security

Download Real-time System Security PDF Online Free

Author :
Publisher : Nova Biomedical Books
ISBN 13 :
Total Pages : 166 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Real-time System Security by : Brett Tjaden

Download or read book Real-time System Security written by Brett Tjaden and published by Nova Biomedical Books. This book was released on 2003 with total page 166 pages. Available in PDF, EPUB and Kindle. Book excerpt: Aimed at designers, this text discusses security issues for mission critical real-time computer systems. Seven contributions from international researchers describe techniques that allow decision makers to detect unusual behavior in their systems and plan and execute an appropriate response. Masters is with the U.S. Naval Surface Warfare Center and Welch teaches at Ohio University. Annotation (c)2003 Book News, Inc., Portland, OR (booknews.com).

Deep Learning for Computer Architects

Download Deep Learning for Computer Architects PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031017560
Total Pages : 109 pages
Book Rating : 4.0/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning for Computer Architects by : Brandon Reagen

Download or read book Deep Learning for Computer Architects written by Brandon Reagen and published by Springer Nature. This book was released on 2022-05-31 with total page 109 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine learning, and specifically deep learning, has been hugely disruptive in many fields of computer science. The success of deep learning techniques in solving notoriously difficult classification and regression problems has resulted in their rapid adoption in solving real-world problems. The emergence of deep learning is widely attributed to a virtuous cycle whereby fundamental advancements in training deeper models were enabled by the availability of massive datasets and high-performance computer hardware. This text serves as a primer for computer architects in a new and rapidly evolving field. We review how machine learning has evolved since its inception in the 1960s and track the key developments leading up to the emergence of the powerful deep learning techniques that emerged in the last decade. Next we review representative workloads, including the most commonly used datasets and seminal networks across a variety of domains. In addition to discussing the workloads themselves, we also detail the most popular deep learning tools and show how aspiring practitioners can use the tools with the workloads to characterize and optimize DNNs. The remainder of the book is dedicated to the design and optimization of hardware and architectures for machine learning. As high-performance hardware was so instrumental in the success of machine learning becoming a practical solution, this chapter recounts a variety of optimizations proposed recently to further improve future designs. Finally, we present a review of recent research published in the area as well as a taxonomy to help readers understand how various contributions fall in context.

Neuromorphic Devices for Brain-inspired Computing

Download Neuromorphic Devices for Brain-inspired Computing PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 3527349790
Total Pages : 258 pages
Book Rating : 4.5/5 (273 download)

DOWNLOAD NOW!


Book Synopsis Neuromorphic Devices for Brain-inspired Computing by : Qing Wan

Download or read book Neuromorphic Devices for Brain-inspired Computing written by Qing Wan and published by John Wiley & Sons. This book was released on 2022-05-16 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explore the cutting-edge of neuromorphic technologies with applications in Artificial Intelligence In Neuromorphic Devices for Brain-Inspired Computing: Artificial Intelligence, Perception, and Robotics, a team of expert engineers delivers a comprehensive discussion of all aspects of neuromorphic electronics designed to assist researchers and professionals to understand and apply all manner of brain-inspired computing and perception technologies. The book covers both memristic and neuromorphic devices, including spintronic, multi-terminal, and neuromorphic perceptual applications. Summarizing recent progress made in five distinct configurations of brain-inspired computing, the authors explore this promising technology’s potential applications in two specific areas: neuromorphic computing systems and neuromorphic perceptual systems. The book also includes: A thorough introduction to two-terminal neuromorphic memristors, including memristive devices and resistive switching mechanisms Comprehensive explorations of spintronic neuromorphic devices and multi-terminal neuromorphic devices with cognitive behaviors Practical discussions of neuromorphic devices based on chalcogenide and organic materials In-depth examinations of neuromorphic computing and perceptual systems with emerging devices Perfect for materials scientists, biochemists, and electronics engineers, Neuromorphic Devices for Brain-Inspired Computing: Artificial Intelligence, Perception, and Robotics will also earn a place in the libraries of neurochemists, neurobiologists, and neurophysiologists.

Compact and Fast Machine Learning Accelerator for IoT Devices

Download Compact and Fast Machine Learning Accelerator for IoT Devices PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9811333238
Total Pages : 157 pages
Book Rating : 4.8/5 (113 download)

DOWNLOAD NOW!


Book Synopsis Compact and Fast Machine Learning Accelerator for IoT Devices by : Hantao Huang

Download or read book Compact and Fast Machine Learning Accelerator for IoT Devices written by Hantao Huang and published by Springer. This book was released on 2018-12-07 with total page 157 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the latest techniques for machine learning based data analytics on IoT edge devices. A comprehensive literature review on neural network compression and machine learning accelerator is presented from both algorithm level optimization and hardware architecture optimization. Coverage focuses on shallow and deep neural network with real applications on smart buildings. The authors also discuss hardware architecture design with coverage focusing on both CMOS based computing systems and the new emerging Resistive Random-Access Memory (RRAM) based systems. Detailed case studies such as indoor positioning, energy management and intrusion detection are also presented for smart buildings.

Introduction to Embedded Systems, Second Edition

Download Introduction to Embedded Systems, Second Edition PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262340526
Total Pages : 562 pages
Book Rating : 4.2/5 (623 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Embedded Systems, Second Edition by : Edward Ashford Lee

Download or read book Introduction to Embedded Systems, Second Edition written by Edward Ashford Lee and published by MIT Press. This book was released on 2017-01-06 with total page 562 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to the engineering principles of embedded systems, with a focus on modeling, design, and analysis of cyber-physical systems. The most visible use of computers and software is processing information for human consumption. The vast majority of computers in use, however, are much less visible. They run the engine, brakes, seatbelts, airbag, and audio system in your car. They digitally encode your voice and construct a radio signal to send it from your cell phone to a base station. They command robots on a factory floor, power generation in a power plant, processes in a chemical plant, and traffic lights in a city. These less visible computers are called embedded systems, and the software they run is called embedded software. The principal challenges in designing and analyzing embedded systems stem from their interaction with physical processes. This book takes a cyber-physical approach to embedded systems, introducing the engineering concepts underlying embedded systems as a technology and as a subject of study. The focus is on modeling, design, and analysis of cyber-physical systems, which integrate computation, networking, and physical processes. The second edition offers two new chapters, several new exercises, and other improvements. The book can be used as a textbook at the advanced undergraduate or introductory graduate level and as a professional reference for practicing engineers and computer scientists. Readers should have some familiarity with machine structures, computer programming, basic discrete mathematics and algorithms, and signals and systems.

Progresses in Artificial Intelligence and Neural Systems

Download Progresses in Artificial Intelligence and Neural Systems PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 981155093X
Total Pages : 588 pages
Book Rating : 4.8/5 (115 download)

DOWNLOAD NOW!


Book Synopsis Progresses in Artificial Intelligence and Neural Systems by : Anna Esposito

Download or read book Progresses in Artificial Intelligence and Neural Systems written by Anna Esposito and published by Springer Nature. This book was released on 2020-07-09 with total page 588 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an overview of the current advances in artificial intelligence and neural nets. Artificial intelligence (AI) methods have shown great capabilities in modelling, prediction and recognition tasks supporting human–machine interaction. At the same time, the issue of emotion has gained increasing attention due to its relevance in achieving human-like interaction with machines. The real challenge is taking advantage of the emotional characterization of humans’ interactions to make computers interfacing with them emotionally and socially credible. The book assesses how and to what extent current sophisticated computational intelligence tools might support the multidisciplinary research on the characterization of appropriate system reactions to human emotions and expressions in interactive scenarios. Discussing the latest recent research trends, innovative approaches and future challenges in AI from interdisciplinary perspectives, it is a valuable resource for researchers and practitioners in academia and industry.

IBM PowerAI: Deep Learning Unleashed on IBM Power Systems Servers

Download IBM PowerAI: Deep Learning Unleashed on IBM Power Systems Servers PDF Online Free

Author :
Publisher : IBM Redbooks
ISBN 13 : 0738442941
Total Pages : 278 pages
Book Rating : 4.7/5 (384 download)

DOWNLOAD NOW!


Book Synopsis IBM PowerAI: Deep Learning Unleashed on IBM Power Systems Servers by : Dino Quintero

Download or read book IBM PowerAI: Deep Learning Unleashed on IBM Power Systems Servers written by Dino Quintero and published by IBM Redbooks. This book was released on 2019-06-05 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: This IBM® Redbooks® publication is a guide about the IBM PowerAI Deep Learning solution. This book provides an introduction to artificial intelligence (AI) and deep learning (DL), IBM PowerAI, and components of IBM PowerAI, deploying IBM PowerAI, guidelines for working with data and creating models, an introduction to IBM SpectrumTM Conductor Deep Learning Impact (DLI), and case scenarios. IBM PowerAI started as a package of software distributions of many of the major DL software frameworks for model training, such as TensorFlow, Caffe, Torch, Theano, and the associated libraries, such as CUDA Deep Neural Network (cuDNN). The IBM PowerAI software is optimized for performance by using the IBM Power SystemsTM servers that are integrated with NVLink. The AI stack foundation starts with servers with accelerators. graphical processing unit (GPU) accelerators are well-suited for the compute-intensive nature of DL training, and servers with the highest CPU to GPU bandwidth, such as IBM Power Systems servers, enable the high-performance data transfer that is required for larger and more complex DL models. This publication targets technical readers, including developers, IT specialists, systems architects, brand specialist, sales team, and anyone looking for a guide about how to understand the IBM PowerAI Deep Learning architecture, framework configuration, application and workload configuration, and user infrastructure.

Low-Power Computer Vision

Download Low-Power Computer Vision PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000540960
Total Pages : 395 pages
Book Rating : 4.0/5 (5 download)

DOWNLOAD NOW!


Book Synopsis Low-Power Computer Vision by : George K. Thiruvathukal

Download or read book Low-Power Computer Vision written by George K. Thiruvathukal and published by CRC Press. This book was released on 2022-02-22 with total page 395 pages. Available in PDF, EPUB and Kindle. Book excerpt: Energy efficiency is critical for running computer vision on battery-powered systems, such as mobile phones or UAVs (unmanned aerial vehicles, or drones). This book collects the methods that have won the annual IEEE Low-Power Computer Vision Challenges since 2015. The winners share their solutions and provide insight on how to improve the efficiency of machine learning systems.

Feedback Systems

Download Feedback Systems PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 069121347X
Total Pages : pages
Book Rating : 4.6/5 (912 download)

DOWNLOAD NOW!


Book Synopsis Feedback Systems by : Karl Johan Åström

Download or read book Feedback Systems written by Karl Johan Åström and published by Princeton University Press. This book was released on 2021-02-02 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The essential introduction to the principles and applications of feedback systems—now fully revised and expanded This textbook covers the mathematics needed to model, analyze, and design feedback systems. Now more user-friendly than ever, this revised and expanded edition of Feedback Systems is a one-volume resource for students and researchers in mathematics and engineering. It has applications across a range of disciplines that utilize feedback in physical, biological, information, and economic systems. Karl Åström and Richard Murray use techniques from physics, computer science, and operations research to introduce control-oriented modeling. They begin with state space tools for analysis and design, including stability of solutions, Lyapunov functions, reachability, state feedback observability, and estimators. The matrix exponential plays a central role in the analysis of linear control systems, allowing a concise development of many of the key concepts for this class of models. Åström and Murray then develop and explain tools in the frequency domain, including transfer functions, Nyquist analysis, PID control, frequency domain design, and robustness. Features a new chapter on design principles and tools, illustrating the types of problems that can be solved using feedback Includes a new chapter on fundamental limits and new material on the Routh-Hurwitz criterion and root locus plots Provides exercises at the end of every chapter Comes with an electronic solutions manual An ideal textbook for undergraduate and graduate students Indispensable for researchers seeking a self-contained resource on control theory

Professional CUDA C Programming

Download Professional CUDA C Programming PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118739329
Total Pages : 528 pages
Book Rating : 4.1/5 (187 download)

DOWNLOAD NOW!


Book Synopsis Professional CUDA C Programming by : John Cheng

Download or read book Professional CUDA C Programming written by John Cheng and published by John Wiley & Sons. This book was released on 2014-09-09 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt: Break into the powerful world of parallel GPU programming with this down-to-earth, practical guide Designed for professionals across multiple industrial sectors, Professional CUDA C Programming presents CUDA -- a parallel computing platform and programming model designed to ease the development of GPU programming -- fundamentals in an easy-to-follow format, and teaches readers how to think in parallel and implement parallel algorithms on GPUs. Each chapter covers a specific topic, and includes workable examples that demonstrate the development process, allowing readers to explore both the "hard" and "soft" aspects of GPU programming. Computing architectures are experiencing a fundamental shift toward scalable parallel computing motivated by application requirements in industry and science. This book demonstrates the challenges of efficiently utilizing compute resources at peak performance, presents modern techniques for tackling these challenges, while increasing accessibility for professionals who are not necessarily parallel programming experts. The CUDA programming model and tools empower developers to write high-performance applications on a scalable, parallel computing platform: the GPU. However, CUDA itself can be difficult to learn without extensive programming experience. Recognized CUDA authorities John Cheng, Max Grossman, and Ty McKercher guide readers through essential GPU programming skills and best practices in Professional CUDA C Programming, including: CUDA Programming Model GPU Execution Model GPU Memory model Streams, Event and Concurrency Multi-GPU Programming CUDA Domain-Specific Libraries Profiling and Performance Tuning The book makes complex CUDA concepts easy to understand for anyone with knowledge of basic software development with exercises designed to be both readable and high-performance. For the professional seeking entrance to parallel computing and the high-performance computing community, Professional CUDA C Programming is an invaluable resource, with the most current information available on the market.

Dive Into Deep Learning

Download Dive Into Deep Learning PDF Online Free

Author :
Publisher : Corwin Press
ISBN 13 : 1544385404
Total Pages : 297 pages
Book Rating : 4.5/5 (443 download)

DOWNLOAD NOW!


Book Synopsis Dive Into Deep Learning by : Joanne Quinn

Download or read book Dive Into Deep Learning written by Joanne Quinn and published by Corwin Press. This book was released on 2019-07-15 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: The leading experts in system change and learning, with their school-based partners around the world, have created this essential companion to their runaway best-seller, Deep Learning: Engage the World Change the World. This hands-on guide provides a roadmap for building capacity in teachers, schools, districts, and systems to design deep learning, measure progress, and assess conditions needed to activate and sustain innovation. Dive Into Deep Learning: Tools for Engagement is rich with resources educators need to construct and drive meaningful deep learning experiences in order to develop the kind of mindset and know-how that is crucial to becoming a problem-solving change agent in our global society. Designed in full color, this easy-to-use guide is loaded with tools, tips, protocols, and real-world examples. It includes: • A framework for deep learning that provides a pathway to develop the six global competencies needed to flourish in a complex world — character, citizenship, collaboration, communication, creativity, and critical thinking. • Learning progressions to help educators analyze student work and measure progress. • Learning design rubrics, templates and examples for incorporating the four elements of learning design: learning partnerships, pedagogical practices, learning environments, and leveraging digital. • Conditions rubrics, teacher self-assessment tools, and planning guides to help educators build, mobilize, and sustain deep learning in schools and districts. Learn about, improve, and expand your world of learning. Put the joy back into learning for students and adults alike. Dive into deep learning to create learning experiences that give purpose, unleash student potential, and transform not only learning, but life itself.

Hybrid Neural Network and Expert Systems

Download Hybrid Neural Network and Expert Systems PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461527260
Total Pages : 241 pages
Book Rating : 4.4/5 (615 download)

DOWNLOAD NOW!


Book Synopsis Hybrid Neural Network and Expert Systems by : Larry R. Medsker

Download or read book Hybrid Neural Network and Expert Systems written by Larry R. Medsker and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hybrid Neural Network and Expert Systems presents the basics of expert systems and neural networks, and the important characteristics relevant to the integration of these two technologies. Through case studies of actual working systems, the author demonstrates the use of these hybrid systems in practical situations. Guidelines and models are described to help those who want to develop their own hybrid systems. Neural networks and expert systems together represent two major aspects of human intelligence and therefore are appropriate for integration. Neural networks represent the visual, pattern-recognition types of intelligence, while expert systems represent the logical, reasoning processes. Together, these technologies allow applications to be developed that are more powerful than when each technique is used individually. Hybrid Neural Network and Expert Systems provides frameworks for understanding how the combination of neural networks and expert systems can produce useful hybrid systems, and illustrates the issues and opportunities in this dynamic field.