Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Mcmc Bayesian Estimation Of A Skew Ged Stochastic Volatility Model
Download Mcmc Bayesian Estimation Of A Skew Ged Stochastic Volatility Model full books in PDF, epub, and Kindle. Read online Mcmc Bayesian Estimation Of A Skew Ged Stochastic Volatility Model ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis The Skew-Normal and Related Families by : Adelchi Azzalini
Download or read book The Skew-Normal and Related Families written by Adelchi Azzalini and published by Cambridge University Press. This book was released on 2013-12-19 with total page 271 pages. Available in PDF, EPUB and Kindle. Book excerpt: Interest in the skew-normal and related families of distributions has grown enormously over recent years, as theory has advanced, challenges of data have grown, and computational tools have made substantial progress. This comprehensive treatment, blending theory and practice, will be the standard resource for statisticians and applied researchers. Assuming only basic knowledge of (non-measure-theoretic) probability and statistical inference, the book is accessible to the wide range of researchers who use statistical modelling techniques. Guiding readers through the main concepts and results, it covers both the probability and the statistics sides of the subject, in the univariate and multivariate settings. The theoretical development is complemented by numerous illustrations and applications to a range of fields including quantitative finance, medical statistics, environmental risk studies, and industrial and business efficiency. The author's freely available R package sn, available from CRAN, equips readers to put the methods into action with their own data.
Book Synopsis Bayesian Inference in Dynamic Econometric Models by : Luc Bauwens
Download or read book Bayesian Inference in Dynamic Econometric Models written by Luc Bauwens and published by OUP Oxford. This book was released on 2000-01-06 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains an up-to-date coverage of the last twenty years advances in Bayesian inference in econometrics, with an emphasis on dynamic models. It shows how to treat Bayesian inference in non linear models, by integrating the useful developments of numerical integration techniques based on simulations (such as Markov Chain Monte Carlo methods), and the long available analytical results of Bayesian inference for linear regression models. It thus covers a broad range of rather recent models for economic time series, such as non linear models, autoregressive conditional heteroskedastic regressions, and cointegrated vector autoregressive models. It contains also an extensive chapter on unit root inference from the Bayesian viewpoint. Several examples illustrate the methods.
Book Synopsis Statistics and Data Analysis for Financial Engineering by : David Ruppert
Download or read book Statistics and Data Analysis for Financial Engineering written by David Ruppert and published by Springer. This book was released on 2015-04-21 with total page 736 pages. Available in PDF, EPUB and Kindle. Book excerpt: The new edition of this influential textbook, geared towards graduate or advanced undergraduate students, teaches the statistics necessary for financial engineering. In doing so, it illustrates concepts using financial markets and economic data, R Labs with real-data exercises, and graphical and analytic methods for modeling and diagnosing modeling errors. These methods are critical because financial engineers now have access to enormous quantities of data. To make use of this data, the powerful methods in this book for working with quantitative information, particularly about volatility and risks, are essential. Strengths of this fully-revised edition include major additions to the R code and the advanced topics covered. Individual chapters cover, among other topics, multivariate distributions, copulas, Bayesian computations, risk management, and cointegration. Suggested prerequisites are basic knowledge of statistics and probability, matrices and linear algebra, and calculus. There is an appendix on probability, statistics and linear algebra. Practicing financial engineers will also find this book of interest.
Book Synopsis Bayesian Theory and Applications by : Paul Damien
Download or read book Bayesian Theory and Applications written by Paul Damien and published by Oxford University Press. This book was released on 2013-01-24 with total page 717 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume guides the reader along a statistical journey that begins with the basic structure of Bayesian theory, and then provides details on most of the past and present advances in this field.
Book Synopsis Volatility and Correlation by : Riccardo Rebonato
Download or read book Volatility and Correlation written by Riccardo Rebonato and published by John Wiley & Sons. This book was released on 2005-07-08 with total page 864 pages. Available in PDF, EPUB and Kindle. Book excerpt: In Volatility and Correlation 2nd edition: The Perfect Hedger and the Fox, Rebonato looks at derivatives pricing from the angle of volatility and correlation. With both practical and theoretical applications, this is a thorough update of the highly successful Volatility & Correlation – with over 80% new or fully reworked material and is a must have both for practitioners and for students. The new and updated material includes a critical examination of the ‘perfect-replication’ approach to derivatives pricing, with special attention given to exotic options; a thorough analysis of the role of quadratic variation in derivatives pricing and hedging; a discussion of the informational efficiency of markets in commonly-used calibration and hedging practices. Treatment of new models including Variance Gamma, displaced diffusion, stochastic volatility for interest-rate smiles and equity/FX options. The book is split into four parts. Part I deals with a Black world without smiles, sets out the author’s ‘philosophical’ approach and covers deterministic volatility. Part II looks at smiles in equity and FX worlds. It begins with a review of relevant empirical information about smiles, and provides coverage of local-stochastic-volatility, general-stochastic-volatility, jump-diffusion and Variance-Gamma processes. Part II concludes with an important chapter that discusses if and to what extent one can dispense with an explicit specification of a model, and can directly prescribe the dynamics of the smile surface. Part III focusses on interest rates when the volatility is deterministic. Part IV extends this setting in order to account for smiles in a financially motivated and computationally tractable manner. In this final part the author deals with CEV processes, with diffusive stochastic volatility and with Markov-chain processes. Praise for the First Edition: “In this book, Dr Rebonato brings his penetrating eye to bear on option pricing and hedging.... The book is a must-read for those who already know the basics of options and are looking for an edge in applying the more sophisticated approaches that have recently been developed.” —Professor Ian Cooper, London Business School “Volatility and correlation are at the very core of all option pricing and hedging. In this book, Riccardo Rebonato presents the subject in his characteristically elegant and simple fashion...A rare combination of intellectual insight and practical common sense.” —Anthony Neuberger, London Business School
Book Synopsis The Skew-Normal and Related Families by : Adelchi Azzalini
Download or read book The Skew-Normal and Related Families written by Adelchi Azzalini and published by Cambridge University Press. This book was released on 2014 with total page 271 pages. Available in PDF, EPUB and Kindle. Book excerpt: The standard resource for statisticians and applied researchers. Accessible to the wide range of researchers who use statistical modelling techniques.
Book Synopsis A Practical Guide to Forecasting Financial Market Volatility by : Ser-Huang Poon
Download or read book A Practical Guide to Forecasting Financial Market Volatility written by Ser-Huang Poon and published by John Wiley & Sons. This book was released on 2005-08-19 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: Financial market volatility forecasting is one of today's most important areas of expertise for professionals and academics in investment, option pricing, and financial market regulation. While many books address financial market modelling, no single book is devoted primarily to the exploration of volatility forecasting and the practical use of forecasting models. A Practical Guide to Forecasting Financial Market Volatility provides practical guidance on this vital topic through an in-depth examination of a range of popular forecasting models. Details are provided on proven techniques for building volatility models, with guide-lines for actually using them in forecasting applications.
Book Synopsis Financial Risk Management with Bayesian Estimation of GARCH Models by : David Ardia
Download or read book Financial Risk Management with Bayesian Estimation of GARCH Models written by David Ardia and published by Springer Science & Business Media. This book was released on 2008-05-08 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents in detail methodologies for the Bayesian estimation of sing- regime and regime-switching GARCH models. These models are widespread and essential tools in n ancial econometrics and have, until recently, mainly been estimated using the classical Maximum Likelihood technique. As this study aims to demonstrate, the Bayesian approach o ers an attractive alternative which enables small sample results, robust estimation, model discrimination and probabilistic statements on nonlinear functions of the model parameters. The author is indebted to numerous individuals for help in the preparation of this study. Primarily, I owe a great debt to Prof. Dr. Philippe J. Deschamps who inspired me to study Bayesian econometrics, suggested the subject, guided me under his supervision and encouraged my research. I would also like to thank Prof. Dr. Martin Wallmeier and my colleagues of the Department of Quantitative Economics, in particular Michael Beer, Roberto Cerratti and Gilles Kaltenrieder, for their useful comments and discussions. I am very indebted to my friends Carlos Ord as Criado, Julien A. Straubhaar, J er ^ ome Ph. A. Taillard and Mathieu Vuilleumier, for their support in the elds of economics, mathematics and statistics. Thanks also to my friend Kevin Barnes who helped with my English in this work. Finally, I am greatly indebted to my parents and grandparents for their support and encouragement while I was struggling with the writing of this thesis.
Book Synopsis Predictive Econometrics and Big Data by : Vladik Kreinovich
Download or read book Predictive Econometrics and Big Data written by Vladik Kreinovich and published by Springer. This book was released on 2017-11-30 with total page 788 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents recent research on predictive econometrics and big data. Gathering edited papers presented at the 11th International Conference of the Thailand Econometric Society (TES2018), held in Chiang Mai, Thailand, on January 10-12, 2018, its main focus is on predictive techniques – which directly aim at predicting economic phenomena; and big data techniques – which enable us to handle the enormous amounts of data generated by modern computers in a reasonable time. The book also discusses the applications of more traditional statistical techniques to econometric problems. Econometrics is a branch of economics that employs mathematical (especially statistical) methods to analyze economic systems, to forecast economic and financial dynamics, and to develop strategies for achieving desirable economic performance. It is therefore important to develop data processing techniques that explicitly focus on prediction. The more data we have, the better our predictions will be. As such, these techniques are essential to our ability to process huge amounts of available data.
Book Synopsis Analysis of Financial Time Series by : Ruey S. Tsay
Download or read book Analysis of Financial Time Series written by Ruey S. Tsay and published by Wiley-Interscience. This book was released on 2001-11-01 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fundamental topics and new methods in time series analysis Analysis of Financial Time Series provides a comprehensive and systematic introduction to financial econometric models and their application to modeling and prediction of financial time series data. It utilizes real-world examples and real financial data throughout the book to apply the models and methods described. The author begins with basic characteristics of financial time series data before covering three main topics: analysis and application of univariate financial time series; the return series of multiple assets; and Bayesian inference in finance methods. Timely topics and recent results include: Value at Risk (VaR) High-frequency financial data analysis Markov Chain Monte Carlo (MCMC) methods Derivative pricing using jump diffusion with closed-form formulas VaR calculation using extreme value theory based on a non-homogeneous two-dimensional Poisson process Multivariate volatility models with time-varying correlations Ideal as a fundamental introduction to time series for MBA students or as a reference for researchers and practitioners in business and finance, Analysis of Financial Time Series offers an in-depth and up-to-date account of these vital methods.
Book Synopsis ARCH Models for Financial Applications by : Evdokia Xekalaki
Download or read book ARCH Models for Financial Applications written by Evdokia Xekalaki and published by John Wiley & Sons. This book was released on 2010-03-18 with total page 558 pages. Available in PDF, EPUB and Kindle. Book excerpt: Autoregressive Conditional Heteroskedastic (ARCH) processes are used in finance to model asset price volatility over time. This book introduces both the theory and applications of ARCH models and provides the basic theoretical and empirical background, before proceeding to more advanced issues and applications. The Authors provide coverage of the recent developments in ARCH modelling which can be implemented using econometric software, model construction, fitting and forecasting and model evaluation and selection. Key Features: Presents a comprehensive overview of both the theory and the practical applications of ARCH, an increasingly popular financial modelling technique. Assumes no prior knowledge of ARCH models; the basics such as model construction are introduced, before proceeding to more complex applications such as value-at-risk, option pricing and model evaluation. Uses empirical examples to demonstrate how the recent developments in ARCH can be implemented. Provides step-by-step instructive examples, using econometric software, such as Econometric Views and the G@RCH module for the Ox software package, used in Estimating and Forecasting ARCH Models. Accompanied by a CD-ROM containing links to the software as well as the datasets used in the examples. Aimed at readers wishing to gain an aptitude in the applications of financial econometric modelling with a focus on practical implementation, via applications to real data and via examples worked with econometrics packages.
Book Synopsis Dynamic Models for Volatility and Heavy Tails by : Andrew C. Harvey
Download or read book Dynamic Models for Volatility and Heavy Tails written by Andrew C. Harvey and published by Cambridge University Press. This book was released on 2013-04-22 with total page 281 pages. Available in PDF, EPUB and Kindle. Book excerpt: The volatility of financial returns changes over time and, for the last thirty years, Generalized Autoregressive Conditional Heteroscedasticity (GARCH) models have provided the principal means of analyzing, modeling and monitoring such changes. Taking into account that financial returns typically exhibit heavy tails - that is, extreme values can occur from time to time - Andrew Harvey's new book shows how a small but radical change in the way GARCH models are formulated leads to a resolution of many of the theoretical problems inherent in the statistical theory. The approach can also be applied to other aspects of volatility. The more general class of Dynamic Conditional Score models extends to robust modeling of outliers in the levels of time series and to the treatment of time-varying relationships. The statistical theory draws on basic principles of maximum likelihood estimation and, by doing so, leads to an elegant and unified treatment of nonlinear time-series modeling.
Book Synopsis Structural Changes and their Econometric Modeling by : Vladik Kreinovich
Download or read book Structural Changes and their Econometric Modeling written by Vladik Kreinovich and published by Springer. This book was released on 2018-11-24 with total page 784 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on structural changes and economic modeling. It presents papers describing how to model structural changes, as well as those introducing improvements to the existing before-structural-changes models, making it easier to later on combine these models with techniques describing structural changes. The book also includes related theoretical developments and practical applications of the resulting techniques to economic problems. Most traditional mathematical models of economic processes describe how the corresponding quantities change with time. However, in addition to such relatively smooth numerical changes, economical phenomena often undergo more drastic structural change. Describing such structural changes is not easy, but it is vital if we want to have a more adequate description of economic phenomena – and thus, more accurate and more reliable predictions and a better understanding on how best to influence the economic situation.
Book Synopsis Advances in Markov-Switching Models by : James D. Hamilton
Download or read book Advances in Markov-Switching Models written by James D. Hamilton and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 267 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a collection of state-of-the-art papers on the properties of business cycles and financial analysis. The individual contributions cover new advances in Markov-switching models with applications to business cycle research and finance. The introduction surveys the existing methods and new results of the last decade. Individual chapters study features of the U. S. and European business cycles with particular focus on the role of monetary policy, oil shocks and co movements among key variables. The short-run versus long-run consequences of an economic recession are also discussed. Another area that is featured is an extensive analysis of currency crises and the possibility of bubbles or fads in stock prices. A concluding chapter offers useful new results on testing for this kind of regime-switching behaviour. Overall, the book provides a state-of-the-art over view of new directions in methods and results for estimation and inference based on the use of Markov-switching time-series analysis. A special feature of the book is that it includes an illustration of a wide range of applications based on a common methodology. It is expected that the theme of the book will be of particular interest to the macroeconomics readers as well as econometrics professionals, scholars and graduate students. We wish to express our gratitude to the authors for their strong contributions and the reviewers for their assistance and careful attention to detail in their reports.
Book Synopsis Statistics and Data Analysis for Financial Engineering by : David Ruppert
Download or read book Statistics and Data Analysis for Financial Engineering written by David Ruppert and published by Springer Science & Business Media. This book was released on 2010-11-08 with total page 638 pages. Available in PDF, EPUB and Kindle. Book excerpt: Financial engineers have access to enormous quantities of data but need powerful methods for extracting quantitative information, particularly about volatility and risks. Key features of this textbook are: illustration of concepts with financial markets and economic data, R Labs with real-data exercises, and integration of graphical and analytic methods for modeling and diagnosing modeling errors. Despite some overlap with the author's undergraduate textbook Statistics and Finance: An Introduction, this book differs from that earlier volume in several important aspects: it is graduate-level; computations and graphics are done in R; and many advanced topics are covered, for example, multivariate distributions, copulas, Bayesian computations, VaR and expected shortfall, and cointegration. The prerequisites are basic statistics and probability, matrices and linear algebra, and calculus. Some exposure to finance is helpful.
Book Synopsis Handbook of Economic Forecasting by : Graham Elliott
Download or read book Handbook of Economic Forecasting written by Graham Elliott and published by Elsevier. This book was released on 2013-08-23 with total page 667 pages. Available in PDF, EPUB and Kindle. Book excerpt: The highly prized ability to make financial plans with some certainty about the future comes from the core fields of economics. In recent years the availability of more data, analytical tools of greater precision, and ex post studies of business decisions have increased demand for information about economic forecasting. Volumes 2A and 2B, which follows Nobel laureate Clive Granger's Volume 1 (2006), concentrate on two major subjects. Volume 2A covers innovations in methodologies, specifically macroforecasting and forecasting financial variables. Volume 2B investigates commercial applications, with sections on forecasters' objectives and methodologies. Experts provide surveys of a large range of literature scattered across applied and theoretical statistics journals as well as econometrics and empirical economics journals. The Handbook of Economic Forecasting Volumes 2A and 2B provide a unique compilation of chapters giving a coherent overview of forecasting theory and applications in one place and with up-to-date accounts of all major conceptual issues. - Focuses on innovation in economic forecasting via industry applications - Presents coherent summaries of subjects in economic forecasting that stretch from methodologies to applications - Makes details about economic forecasting accessible to scholars in fields outside economics
Book Synopsis Bayesian Methods in Finance by : Svetlozar T. Rachev
Download or read book Bayesian Methods in Finance written by Svetlozar T. Rachev and published by John Wiley & Sons. This book was released on 2008-02-13 with total page 351 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian Methods in Finance provides a detailed overview of the theory of Bayesian methods and explains their real-world applications to financial modeling. While the principles and concepts explained throughout the book can be used in financial modeling and decision making in general, the authors focus on portfolio management and market risk management—since these are the areas in finance where Bayesian methods have had the greatest penetration to date.