Matplotlib 2.x By Example

Download Matplotlib 2.x By Example PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1788292138
Total Pages : 328 pages
Book Rating : 4.7/5 (882 download)

DOWNLOAD NOW!


Book Synopsis Matplotlib 2.x By Example by : Allen Yu

Download or read book Matplotlib 2.x By Example written by Allen Yu and published by Packt Publishing Ltd. This book was released on 2017-08-28 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unlock deeper insights into visualization in form of 2D and 3D graphs using Matplotlib 2.x About This Book Create and customize live graphs, by adding style, color, font to make appealing graphs. A complete guide with insightful use cases and examples to perform data visualizations with Matplotlib's extensive toolkits. Create timestamp data visualizations on 2D and 3D graphs in form of plots, histogram, bar charts, scatterplots and more. Who This Book Is For This book is for anyone interested in data visualization, to get insights from big data with Python and Matplotlib 2.x. With this book you will be able to extend your knowledge and learn how to use python code in order to visualize your data with Matplotlib. Basic knowledge of Python is expected. What You Will Learn Familiarize with the latest features in Matplotlib 2.x Create data visualizations on 2D and 3D charts in the form of bar charts, bubble charts, heat maps, histograms, scatter plots, stacked area charts, swarm plots and many more. Make clear and appealing figures for scientific publications. Create interactive charts and animation. Extend the functionalities of Matplotlib with third-party packages, such as Basemap, GeoPandas, Mplot3d, Pandas, Scikit-learn, and Seaborn. Design intuitive infographics for effective storytelling. In Detail Big data analytics are driving innovations in scientific research, digital marketing, policy-making and much more. Matplotlib offers simple but powerful plotting interface, versatile plot types and robust customization. Matplotlib 2.x By Example illustrates the methods and applications of various plot types through real world examples. It begins by giving readers the basic know-how on how to create and customize plots by Matplotlib. It further covers how to plot different types of economic data in the form of 2D and 3D graphs, which give insights from a deluge of data from public repositories, such as Quandl Finance. You will learn to visualize geographical data on maps and implement interactive charts. By the end of this book, you will become well versed with Matplotlib in your day-to-day work to perform advanced data visualization. This book will guide you to prepare high quality figures for manuscripts and presentations. You will learn to create intuitive info-graphics and reshaping your message crisply understandable. Style and approach Step by step comprehensive guide filled with real world examples.

Matplotlib 2. X by Example

Download Matplotlib 2. X by Example PDF Online Free

Author :
Publisher :
ISBN 13 : 9781788295260
Total Pages : 334 pages
Book Rating : 4.2/5 (952 download)

DOWNLOAD NOW!


Book Synopsis Matplotlib 2. X by Example by : Allen Yu

Download or read book Matplotlib 2. X by Example written by Allen Yu and published by . This book was released on 2017-08-28 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unlock deeper insights into visualization in form of 2D and 3D graphs using Matplotlib 2.xAbout This Book* Create and customize live graphs, by adding style, color, font to make appealing graphs.* A complete guide with insightful use cases and examples to perform data visualizations with Matplotlib's extensive toolkits.* Create timestamp data visualizations on 2D and 3D graphs in form of plots, histogram, bar charts, scatterplots and more.Who This Book Is ForThis book is for anyone interested in data visualization, to get insights from big data with Python and Matplotlib 2.x. With this book you will be able to extend your knowledge and learn how to use python code in order to visualize your data with Matplotlib. Basic knowledge of Python is expected.What You Will Learn* Familiarize with the latest features in Matplotlib 2.x* Create data visualizations on 2D and 3D charts in the form of bar charts, bubble charts, heat maps, histograms, scatter plots, stacked area charts, swarm plots and many more.* Make clear and appealing figures for scientific publications.* Create interactive charts and animation.* Extend the functionalities of Matplotlib with third-party packages, such as Basemap, GeoPandas, Mplot3d, Pandas, Scikit-learn, and Seaborn.* Design intuitive infographics for effective storytelling.In DetailBig data analytics are driving innovations in scientific research, digital marketing, policy-making and much more. Matplotlib offers simple but powerful plotting interface, versatile plot types and robust customization.Matplotlib 2.x By Example illustrates the methods and applications of various plot types through real world examples.It begins by giving readers the basic know-how on how to create and customize plots by Matplotlib. It further covers how to plot different types of economic data in the form of 2D and 3D graphs, which give insights from a deluge of data from public repositories, such as Quandl Finance. You will learn to visualize geographical data on maps and implement interactive charts.By the end of this book, you will become well versed with Matplotlib in your day-to-day work to perform advanced data visualization. This book will guide you to prepare high quality figures for manuscripts and presentations. You will learn to create intuitive info-graphics and reshaping your message crisply understandable.Style and approachStep by step comprehensive guide filled with real world examples.

Python Data Science Handbook

Download Python Data Science Handbook PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1491912138
Total Pages : 609 pages
Book Rating : 4.4/5 (919 download)

DOWNLOAD NOW!


Book Synopsis Python Data Science Handbook by : Jake VanderPlas

Download or read book Python Data Science Handbook written by Jake VanderPlas and published by "O'Reilly Media, Inc.". This book was released on 2016-11-21 with total page 609 pages. Available in PDF, EPUB and Kindle. Book excerpt: For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you’ll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms

Mastering Matplotlib 2.x

Download Mastering Matplotlib 2.x PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1789618177
Total Pages : 207 pages
Book Rating : 4.7/5 (896 download)

DOWNLOAD NOW!


Book Synopsis Mastering Matplotlib 2.x by : Benjamin Walter Keller

Download or read book Mastering Matplotlib 2.x written by Benjamin Walter Keller and published by Packt Publishing Ltd. This book was released on 2018-11-29 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understand and build beautiful and advanced plots with Matplotlib and Python Key FeaturesPractical guide with hands-on examples to design interactive plotsAdvanced techniques to constructing complex plotsExplore 3D plotting and visualization using Jupyter NotebookBook Description In this book, you’ll get hands-on with customizing your data plots with the help of Matplotlib. You’ll start with customizing plots, making a handful of special-purpose plots, and building 3D plots. You’ll explore non-trivial layouts, Pylab customization, and more about tile configuration. You’ll be able to add text, put lines in plots, and also handle polygons, shapes, and annotations. Non-Cartesian and vector plots are exciting to construct, and you’ll explore them further in this book. You’ll delve into niche plots and visualize ordinal and tabular data. In this book, you’ll be exploring 3D plotting, one of the best features when it comes to 3D data visualization, along with Jupyter Notebook, widgets, and creating movies for enhanced data representation. Geospatial plotting will also be explored. Finally, you’ll learn how to create interactive plots with the help of Jupyter. Learn expert techniques for effective data visualization using Matplotlib 3 and Python with our latest offering -- Matplotlib 3.0 Cookbook What you will learnDeal with non-trivial and unusual plotsUnderstanding Basemap methodsCustomize and represent data in 3D Construct Non-Cartesian and vector plotsDesign interactive plots using Jupyter NotebookMake movies for enhanced data representationWho this book is for This book is aimed at individuals who want to explore data visualization techniques. A basic knowledge of Matplotlib and Python is required.

Matplotlib 3.0 Cookbook

Download Matplotlib 3.0 Cookbook PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1789138663
Total Pages : 667 pages
Book Rating : 4.7/5 (891 download)

DOWNLOAD NOW!


Book Synopsis Matplotlib 3.0 Cookbook by : Srinivasa Rao Poladi

Download or read book Matplotlib 3.0 Cookbook written by Srinivasa Rao Poladi and published by Packt Publishing Ltd. This book was released on 2018-10-23 with total page 667 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build attractive, insightful, and powerful visualizations to gain quality insights from your data Key FeaturesMaster Matplotlib for data visualizationCustomize basic plots to make and deploy figures in cloud environmentsExplore recipes to design various data visualizations from simple bar charts to advanced 3D plotsBook Description Matplotlib provides a large library of customizable plots, along with a comprehensive set of backends. Matplotlib 3.0 Cookbook is your hands-on guide to exploring the world of Matplotlib, and covers the most effective plotting packages for Python 3.7. With the help of this cookbook, you'll be able to tackle any problem you might come across while designing attractive, insightful data visualizations. With the help of over 150 recipes, you'll learn how to develop plots related to business intelligence, data science, and engineering disciplines with highly detailed visualizations. Once you've familiarized yourself with the fundamentals, you'll move on to developing professional dashboards with a wide variety of graphs and sophisticated grid layouts in 2D and 3D. You'll annotate and add rich text to the plots, enabling the creation of a business storyline. In addition to this, you'll learn how to save figures and animations in various formats for downstream deployment, followed by extending the functionality offered by various internal and third-party toolkits, such as axisartist, axes_grid, Cartopy, and Seaborn. By the end of this book, you'll be able to create high-quality customized plots and deploy them on the web and on supported GUI applications such as Tkinter, Qt 5, and wxPython by implementing real-world use cases and examples. What you will learnDevelop simple to advanced data visualizations in Matplotlib Use the pyplot API to quickly develop and deploy different plots Use object-oriented APIs for maximum flexibility with the customization of figuresDevelop interactive plots with animation and widgets Use maps for geographical plotting Enrich your visualizations using embedded texts and mathematical expressionsEmbed Matplotlib plots into other GUIs used for developing applicationsUse toolkits such as axisartist, axes_grid1, and cartopy to extend the base functionality of MatplotlibWho this book is for The Matplotlib 3.0 Cookbook is for you if you are a data analyst, data scientist, or Python developer looking for quick recipes for a multitude of visualizations. This book is also for those who want to build variations of interactive visualizations.

Matplotlib for Python Developers

Download Matplotlib for Python Developers PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1847197914
Total Pages : 438 pages
Book Rating : 4.8/5 (471 download)

DOWNLOAD NOW!


Book Synopsis Matplotlib for Python Developers by : Sandro Tosi

Download or read book Matplotlib for Python Developers written by Sandro Tosi and published by Packt Publishing Ltd. This book was released on 2009-11-09 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a practical, hands-on book, with a lot of code and images. It presents the real code that generates every image and describes almost every single line of it, so that you know exactly what's going on. Introductory, descriptive, and theoretical parts are mixed with examples, so that reading and understanding them is easy. All of the examples build gradually with code snippets, their explanations, and plot images where necessary with the complete code and output presented at the end. This book is essentially for Python developers who have a good knowledge of Python; no knowledge of Matplotlib is required. You will be creating 2D plots using Matplotlib in no time at all.

Python and Matplotlib Essentials for Scientists and Engineers

Download Python and Matplotlib Essentials for Scientists and Engineers PDF Online Free

Author :
Publisher : Morgan & Claypool Publishers
ISBN 13 : 1627056211
Total Pages : 191 pages
Book Rating : 4.6/5 (27 download)

DOWNLOAD NOW!


Book Synopsis Python and Matplotlib Essentials for Scientists and Engineers by : Matt A Wood

Download or read book Python and Matplotlib Essentials for Scientists and Engineers written by Matt A Wood and published by Morgan & Claypool Publishers. This book was released on 2015-06-01 with total page 191 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to the core features of the Python programming language and Matplotlib plotting routings for scientists and engineers (or students of either discipline) who want to use PythonTM to analyse data, simulate physical processes, and render publication-quality plots. No previous programming experience is needed before reading the first page. Readers will learn the core features of the Python programming language in under a day. They will be able to immediately use Python to implement codes that solve their own problems and make beautiful plots and animations. Python code is extremely fast to prototype, allowing users to achieve results quickly and accurately. The examples within the book are available for download at http://pythonessentials.com. Python and Matplotlib Essentials for Scientists and Engineers is accessible for motivated high-school students, but will likely be most useful for undergraduate and graduate students as well as working professionals who have some background with the basic mathematical concepts. This book is intended for technical people who want to get things done.

Numerical Python

Download Numerical Python PDF Online Free

Author :
Publisher : Apress
ISBN 13 : 1484242467
Total Pages : 709 pages
Book Rating : 4.4/5 (842 download)

DOWNLOAD NOW!


Book Synopsis Numerical Python by : Robert Johansson

Download or read book Numerical Python written by Robert Johansson and published by Apress. This book was released on 2018-12-24 with total page 709 pages. Available in PDF, EPUB and Kindle. Book excerpt: Leverage the numerical and mathematical modules in Python and its standard library as well as popular open source numerical Python packages like NumPy, SciPy, FiPy, matplotlib and more. This fully revised edition, updated with the latest details of each package and changes to Jupyter projects, demonstrates how to numerically compute solutions and mathematically model applications in big data, cloud computing, financial engineering, business management and more. Numerical Python, Second Edition, presents many brand-new case study examples of applications in data science and statistics using Python, along with extensions to many previous examples. Each of these demonstrates the power of Python for rapid development and exploratory computing due to its simple and high-level syntax and multiple options for data analysis. After reading this book, readers will be familiar with many computing techniques including array-based and symbolic computing, visualization and numerical file I/O, equation solving, optimization, interpolation and integration, and domain-specific computational problems, such as differential equation solving, data analysis, statistical modeling and machine learning. What You'll Learn Work with vectors and matrices using NumPy Plot and visualize data with Matplotlib Perform data analysis tasks with Pandas and SciPy Review statistical modeling and machine learning with statsmodels and scikit-learn Optimize Python code using Numba and Cython Who This Book Is For Developers who want to understand how to use Python and its related ecosystem for numerical computing.

DATA SCIENCE: FOUNDATION & FUNDAMENTALS

Download DATA SCIENCE: FOUNDATION & FUNDAMENTALS PDF Online Free

Author :
Publisher : Xoffencerpublication
ISBN 13 : 8119534271
Total Pages : 244 pages
Book Rating : 4.1/5 (195 download)

DOWNLOAD NOW!


Book Synopsis DATA SCIENCE: FOUNDATION & FUNDAMENTALS by : Mr. Ramkumar A

Download or read book DATA SCIENCE: FOUNDATION & FUNDAMENTALS written by Mr. Ramkumar A and published by Xoffencerpublication. This book was released on 2023-08-21 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: The academic field of computer science did not develop as a separate subject of study until the 1960s after it had been in existence since the 1950s. The mathematical theory that underpinned the fields of computer programming, compilers, and operating systems was one of the primary focuses of this class. Other important topics were the various programming languages and operating systems. Context-free languages, finite automata, regular expressions, and computability were a few of the topics that were discussed in theoretical computer science lectures. The area of study known as algorithmic analysis became an essential component of theory in the 1970s, after having been mostly overlooked for the majority of its existence up to that point in time. The purpose of this initiative was to investigate and identify practical applications for computer technology. At the time, a significant change is taking place, and a greater amount of attention is being paid to the vast number of different applications that may be utilized. This shift is the cumulative effect of several separate variables coming together at the same time. The convergence of computing and communication technology has been a major motivator, and as a result, this change may be primarily attributed to that convergence. Our current knowledge of data and the most effective approach to work with it in the modern world has to be revised in light of recent advancements in the capability to monitor, collect, and store data in a variety of fields, including the natural sciences, business, and other fields. This is necessary because of the recent breakthroughs in these capabilities. This is as a result of recent advancements that have been made in these capacities. The widespread adoption of the internet and other forms of social networking as indispensable components of people's lives brings with it a variety of opportunities for theoretical development as well as difficulties in actual use. Traditional subfields of computer science continue to hold a significant amount of weight in the field as a whole; however, researchers of the future will focus more on how to use computers to comprehend and extract usable information from massive amounts of data arising from applications rather than how to make computers useful for solving particular problems in a well-defined manner. This shift in emphasis is due to the fact that researchers of 1 | P a ge the future will be more concerned with how to use computers to comprehend and extract usable information from massive amounts of data arising from applications. This shift in emphasis is because researchers of the future will be more concerned with how to use the information they find. As a result of this, we felt it necessary to compile this book, which discusses a theory that would, according to our projections, play an important role within the next 40 years. We think that having a grasp of this issue will provide students with an advantage in the next 40 years, in the same way that having an understanding of automata theory, algorithms, and other topics of a similar sort provided students an advantage in the 40 years prior to this one, and in the 40 years after this one. A movement toward placing a larger emphasis on probabilities, statistical approaches, and numerical processes is one of the most significant shifts that has taken place as a result of the developments that have taken place. Early drafts of the book have been assigned reading at a broad variety of academic levels, ranging all the way from the undergraduate level to the graduate level. The information that is expected to have been learned before for a class that is taken at the undergraduate level may be found in the appendix. As a result of this, the appendix will provide you with some activities to do as a component of your project.

Python: Real World Machine Learning

Download Python: Real World Machine Learning PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1787120678
Total Pages : 941 pages
Book Rating : 4.7/5 (871 download)

DOWNLOAD NOW!


Book Synopsis Python: Real World Machine Learning by : Prateek Joshi

Download or read book Python: Real World Machine Learning written by Prateek Joshi and published by Packt Publishing Ltd. This book was released on 2016-11-14 with total page 941 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn to solve challenging data science problems by building powerful machine learning models using Python About This Book Understand which algorithms to use in a given context with the help of this exciting recipe-based guide This practical tutorial tackles real-world computing problems through a rigorous and effective approach Build state-of-the-art models and develop personalized recommendations to perform machine learning at scale Who This Book Is For This Learning Path is for Python programmers who are looking to use machine learning algorithms to create real-world applications. It is ideal for Python professionals who want to work with large and complex datasets and Python developers and analysts or data scientists who are looking to add to their existing skills by accessing some of the most powerful recent trends in data science. Experience with Python, Jupyter Notebooks, and command-line execution together with a good level of mathematical knowledge to understand the concepts is expected. Machine learning basic knowledge is also expected. What You Will Learn Use predictive modeling and apply it to real-world problems Understand how to perform market segmentation using unsupervised learning Apply your new-found skills to solve real problems, through clearly-explained code for every technique and test Compete with top data scientists by gaining a practical and theoretical understanding of cutting-edge deep learning algorithms Increase predictive accuracy with deep learning and scalable data-handling techniques Work with modern state-of-the-art large-scale machine learning techniques Learn to use Python code to implement a range of machine learning algorithms and techniques In Detail Machine learning is increasingly spreading in the modern data-driven world. It is used extensively across many fields such as search engines, robotics, self-driving cars, and more. Machine learning is transforming the way we understand and interact with the world around us. In the first module, Python Machine Learning Cookbook, you will learn how to perform various machine learning tasks using a wide variety of machine learning algorithms to solve real-world problems and use Python to implement these algorithms. The second module, Advanced Machine Learning with Python, is designed to take you on a guided tour of the most relevant and powerful machine learning techniques and you'll acquire a broad set of powerful skills in the area of feature selection and feature engineering. The third module in this learning path, Large Scale Machine Learning with Python, dives into scalable machine learning and the three forms of scalability. It covers the most effective machine learning techniques on a map reduce framework in Hadoop and Spark in Python. This Learning Path will teach you Python machine learning for the real world. The machine learning techniques covered in this Learning Path are at the forefront of commercial practice. This Learning Path combines some of the best that Packt has to offer in one complete, curated package. It includes content from the following Packt products: Python Machine Learning Cookbook by Prateek Joshi Advanced Machine Learning with Python by John Hearty Large Scale Machine Learning with Python by Bastiaan Sjardin, Alberto Boschetti, Luca Massaron Style and approach This course is a smooth learning path that will teach you how to get started with Python machine learning for the real world, and develop solutions to real-world problems. Through this comprehensive course, you'll learn to create the most effective machine learning techniques from scratch and more!

Beginning Python Visualization

Download Beginning Python Visualization PDF Online Free

Author :
Publisher : Apress
ISBN 13 : 1484200527
Total Pages : 405 pages
Book Rating : 4.4/5 (842 download)

DOWNLOAD NOW!


Book Synopsis Beginning Python Visualization by : Shai Vaingast

Download or read book Beginning Python Visualization written by Shai Vaingast and published by Apress. This book was released on 2014-08-28 with total page 405 pages. Available in PDF, EPUB and Kindle. Book excerpt: We are visual animals. But before we can see the world in its true splendor, our brains, just like our computers, have to sort and organize raw data, and then transform that data to produce new images of the world. Beginning Python Visualization: Crafting Visual Transformation Scripts, Second Edition discusses turning many types of data sources, big and small, into useful visual data. And, you will learn Python as part of the bargain. In this second edition you’ll learn about Spyder, which is a Python IDE with MATLAB® -like features. Here and throughout the book, you’ll get detailed exposure to the growing IPython project for interactive visualization. In addition, you'll learn about the changes in NumPy and Scipy that have occurred since the first edition. Along the way, you'll get many pointers and a few visual examples. As part of this update, you’ll learn about matplotlib in detail; this includes creating 3D graphs and using the basemap package that allows you to render geographical maps. Finally, you'll learn about image processing, annotating, and filtering, as well as how to make movies using Python. This includes learning how to edit/open video files and how to create your own movie, all with Python scripts. Today's big data and computational scientists, financial analysts/engineers and web developers – like you - will find this updated book very relevant.

Introduction to the Tools of Scientific Computing

Download Introduction to the Tools of Scientific Computing PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031169727
Total Pages : 429 pages
Book Rating : 4.0/5 (311 download)

DOWNLOAD NOW!


Book Synopsis Introduction to the Tools of Scientific Computing by : Einar Smith

Download or read book Introduction to the Tools of Scientific Computing written by Einar Smith and published by Springer Nature. This book was released on 2022-11-28 with total page 429 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides an introduction to common programming tools and methods in numerical mathematics and scientific computing. Unlike standard approaches, it does not focus on any specific language, but aims to explain the underlying ideas. Typically, new concepts are first introduced in the particularly user-friendly Python language and then transferred and extended in various programming environments from C/C++, Julia and MATLAB to Maple and Mathematica. This includes various approaches to distributed computing. By examining and comparing different languages, the book is also helpful for mathematicians and practitioners in deciding which programming language to use for which purposes. At a more advanced level, special tools for the automated solution of partial differential equations using the finite element method are discussed. On a more experimental level, the basic methods of scientific machine learning in artificial neural networks are explained and illustrated.

Python Machine Learning By Example

Download Python Machine Learning By Example PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 183508222X
Total Pages : 519 pages
Book Rating : 4.8/5 (35 download)

DOWNLOAD NOW!


Book Synopsis Python Machine Learning By Example by : Yuxi (Hayden) Liu

Download or read book Python Machine Learning By Example written by Yuxi (Hayden) Liu and published by Packt Publishing Ltd. This book was released on 2024-07-31 with total page 519 pages. Available in PDF, EPUB and Kindle. Book excerpt: Author Yuxi (Hayden) Liu teaches machine learning from the fundamentals to building NLP transformers and multimodal models with best practice tips and real-world examples using PyTorch, TensorFlow, scikit-learn, and pandas Key Features Discover new and updated content on NLP transformers, PyTorch, and computer vision modeling Includes a dedicated chapter on best practices and additional best practice tips throughout the book to improve your ML solutions Implement ML models, such as neural networks and linear and logistic regression, from scratch Purchase of the print or Kindle book includes a free PDF copy Book DescriptionThe fourth edition of Python Machine Learning By Example is a comprehensive guide for beginners and experienced machine learning practitioners who want to learn more advanced techniques, such as multimodal modeling. Written by experienced machine learning author and ex-Google machine learning engineer Yuxi (Hayden) Liu, this edition emphasizes best practices, providing invaluable insights for machine learning engineers, data scientists, and analysts. Explore advanced techniques, including two new chapters on natural language processing transformers with BERT and GPT, and multimodal computer vision models with PyTorch and Hugging Face. You’ll learn key modeling techniques using practical examples, such as predicting stock prices and creating an image search engine. This hands-on machine learning book navigates through complex challenges, bridging the gap between theoretical understanding and practical application. Elevate your machine learning and deep learning expertise, tackle intricate problems, and unlock the potential of advanced techniques in machine learning with this authoritative guide.What you will learn Follow machine learning best practices throughout data preparation and model development Build and improve image classifiers using convolutional neural networks (CNNs) and transfer learning Develop and fine-tune neural networks using TensorFlow and PyTorch Analyze sequence data and make predictions using recurrent neural networks (RNNs), transformers, and CLIP Build classifiers using support vector machines (SVMs) and boost performance with PCA Avoid overfitting using regularization, feature selection, and more Who this book is for This expanded fourth edition is ideal for data scientists, ML engineers, analysts, and students with Python programming knowledge. The real-world examples, best practices, and code prepare anyone undertaking their first serious ML project.

Fundamentals of Machine Learning

Download Fundamentals of Machine Learning PDF Online Free

Author :
Publisher :
ISBN 13 : 0198828047
Total Pages : 260 pages
Book Rating : 4.1/5 (988 download)

DOWNLOAD NOW!


Book Synopsis Fundamentals of Machine Learning by : Thomas P. Trappenberg

Download or read book Fundamentals of Machine Learning written by Thomas P. Trappenberg and published by . This book was released on 2020 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: Interest in machine learning is exploding across the world, both in research and for industrial applications. Fundamentals of Machine Learning provides a brief and accessible introduction to this rapidly growing field, one that will appeal to both students and researchers.

Python for Scientists

Download Python for Scientists PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1009014803
Total Pages : 301 pages
Book Rating : 4.0/5 (9 download)

DOWNLOAD NOW!


Book Synopsis Python for Scientists by : John M. Stewart

Download or read book Python for Scientists written by John M. Stewart and published by Cambridge University Press. This book was released on 2023-08-31 with total page 301 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn Python starting from the very basics all the way to numerical and symbolic math, quantitative analysis, and beyond.

Electrodynamics Tutorials with Python Simulations

Download Electrodynamics Tutorials with Python Simulations PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 104000931X
Total Pages : 295 pages
Book Rating : 4.0/5 (4 download)

DOWNLOAD NOW!


Book Synopsis Electrodynamics Tutorials with Python Simulations by : Taejoon Kouh

Download or read book Electrodynamics Tutorials with Python Simulations written by Taejoon Kouh and published by CRC Press. This book was released on 2024-04-08 with total page 295 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an accessible introduction to intermediate-level electrodynamics with computa- tional approaches to complement a traditional mathematical treatment of the subject. It covers key topics in electrodynamics, such as electromagnetic fields, forces, potentials, and waves as well as Special Theory of Relativity. Through intuition-building examples and visualizations in the Python programming language, it helps readers to develop technical computing skills in numerical and symbolic calculations, modeling and simulations, and visualizations. Python is a highly readable and practical programming language, making this book appropriate for students without extensive programming experience. This book can serve as an electrodynamics textbook for undergraduate physics and engineering students in their second or third years, who are studying intermediate- or advanced-level electrodynamics and who want to learn techniques for scientific computing at the same time. This book will also appeal to computer science students who want to see how their computer programming skills may be applied to science, particularly to physics, without needing too much background physics knowledge. Key features Major concepts in classical electrodynamics are introduced cohesively through computational and mathematical treatments Computational examples in Python programming language guide students on how to simulate and visualize electrodynamic principles and phenomena for themselves

NumPy Simply In Depth

Download NumPy Simply In Depth PDF Online Free

Author :
Publisher : Ajit Singh
ISBN 13 :
Total Pages : 115 pages
Book Rating : 4./5 ( download)

DOWNLOAD NOW!


Book Synopsis NumPy Simply In Depth by : Ajit Singh

Download or read book NumPy Simply In Depth written by Ajit Singh and published by Ajit Singh. This book was released on with total page 115 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers Python mathematical library NumPy in detail. NumPy (short for Numerical Python) provides an efficient interface to store and operate on dense data buffers. In some ways, NumPy arrays are like Python's built-in list type, but NumPy arrays provide much more efficient storage and data operations as the arrays grow larger in size. NumPy arrays form the core of nearly the entire ecosystem of data science tools in Python, so time spent learning to use NumPy effectively will be valuable no matter what aspect of data science interests you. You will learn all the essential things needed to become a confident NumPy user. NumPy started originally as part of SciPy and then was singled out as a fundamental library, which other open source Python APIs build on. As such, it is a crucial part of the common Python stack used for numerical and data analysis. Anyone with basic (and upward) knowledge of Python is the targeted audience for this book. Although the tools in NumPy are relatively advanced, using them is simple and should keep even a novice Python programmer happy. Features; ● Work with vectors and matrices using NumPy ● Plot and visualize data with Matplotlib ● Perform data analysis tasks with Pandas and SciPy ● Review statistical modeling and machine learning with statsmodels and scikit-learn ● Optimize Python code using Numba and Cython After reading this book, you will be familiar with many computing techniques including array-based and symbolic computing, visualization and numerical file I/O, equation solving, optimization, interpolation and integration, and domain-specific computational problems, such as differential equation solving, data analysis, statistical modeling and machine learning.