Mastering Natural Language Processing with Python

Download Mastering Natural Language Processing with Python PDF Online Free

Author :
Publisher : Packt Publishing
ISBN 13 : 9781783989041
Total Pages : 238 pages
Book Rating : 4.9/5 (89 download)

DOWNLOAD NOW!


Book Synopsis Mastering Natural Language Processing with Python by : Deepti Chopra

Download or read book Mastering Natural Language Processing with Python written by Deepti Chopra and published by Packt Publishing. This book was released on 2016-06-10 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: Maximize your NLP capabilities while creating amazing NLP projects in PythonAbout This Book* Learn to implement various NLP tasks in Python* Gain insights into the current and budding research topics of NLP* This is a comprehensive step-by-step guide to help students and researchers create their own projects based on real-life applicationsWho This Book Is ForThis book is for intermediate level developers in NLP with a reasonable knowledge level and understanding of Python.What You Will Learn* Implement string matching algorithms and normalization techniques* Implement statistical language modeling techniques* Get an insight into developing a stemmer, lemmatizer, morphological analyzer, and morphological generator* Develop a search engine and implement POS tagging concepts and statistical modeling concepts involving the n gram approach* Familiarize yourself with concepts such as the Treebank construct, CFG construction, the CYK Chart Parsing algorithm, and the Earley Chart Parsing algorithm* Develop an NER-based system and understand and apply the concepts of sentiment analysis* Understand and implement the concepts of Information Retrieval and text summarization* Develop a Discourse Analysis System and Anaphora Resolution based systemIn DetailNatural Language Processing is one of the fields of computational linguistics and artificial intelligence that is concerned with human-computer interaction. It provides a seamless interaction between computers and human beings and gives computers the ability to understand human speech with the help of machine learning.This book will give you expertise on how to employ various NLP tasks in Python, giving you an insight into the best practices when designing and building NLP-based applications using Python. It will help you become an expert in no time and assist you in creating your own NLP projects using NLTK.You will sequentially be guided through applying machine learning tools to develop various models. We'll give you clarity on how to create training data and how to implement major NLP applications such as Named Entity Recognition, Question Answering System, Discourse Analysis, Transliteration, Word Sense disambiguation, Information Retrieval, Sentiment Analysis, Text Summarization, and Anaphora Resolution.

Natural Language Processing: Python and NLTK

Download Natural Language Processing: Python and NLTK PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 178728784X
Total Pages : 687 pages
Book Rating : 4.7/5 (872 download)

DOWNLOAD NOW!


Book Synopsis Natural Language Processing: Python and NLTK by : Nitin Hardeniya

Download or read book Natural Language Processing: Python and NLTK written by Nitin Hardeniya and published by Packt Publishing Ltd. This book was released on 2016-11-22 with total page 687 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn to build expert NLP and machine learning projects using NLTK and other Python libraries About This Book Break text down into its component parts for spelling correction, feature extraction, and phrase transformation Work through NLP concepts with simple and easy-to-follow programming recipes Gain insights into the current and budding research topics of NLP Who This Book Is For If you are an NLP or machine learning enthusiast and an intermediate Python programmer who wants to quickly master NLTK for natural language processing, then this Learning Path will do you a lot of good. Students of linguistics and semantic/sentiment analysis professionals will find it invaluable. What You Will Learn The scope of natural language complexity and how they are processed by machines Clean and wrangle text using tokenization and chunking to help you process data better Tokenize text into sentences and sentences into words Classify text and perform sentiment analysis Implement string matching algorithms and normalization techniques Understand and implement the concepts of information retrieval and text summarization Find out how to implement various NLP tasks in Python In Detail Natural Language Processing is a field of computational linguistics and artificial intelligence that deals with human-computer interaction. It provides a seamless interaction between computers and human beings and gives computers the ability to understand human speech with the help of machine learning. The number of human-computer interaction instances are increasing so it's becoming imperative that computers comprehend all major natural languages. The first NLTK Essentials module is an introduction on how to build systems around NLP, with a focus on how to create a customized tokenizer and parser from scratch. You will learn essential concepts of NLP, be given practical insight into open source tool and libraries available in Python, shown how to analyze social media sites, and be given tools to deal with large scale text. This module also provides a workaround using some of the amazing capabilities of Python libraries such as NLTK, scikit-learn, pandas, and NumPy. The second Python 3 Text Processing with NLTK 3 Cookbook module teaches you the essential techniques of text and language processing with simple, straightforward examples. This includes organizing text corpora, creating your own custom corpus, text classification with a focus on sentiment analysis, and distributed text processing methods. The third Mastering Natural Language Processing with Python module will help you become an expert and assist you in creating your own NLP projects using NLTK. You will be guided through model development with machine learning tools, shown how to create training data, and given insight into the best practices for designing and building NLP-based applications using Python. This Learning Path combines some of the best that Packt has to offer in one complete, curated package and is designed to help you quickly learn text processing with Python and NLTK. It includes content from the following Packt products: NTLK essentials by Nitin Hardeniya Python 3 Text Processing with NLTK 3 Cookbook by Jacob Perkins Mastering Natural Language Processing with Python by Deepti Chopra, Nisheeth Joshi, and Iti Mathur Style and approach This comprehensive course creates a smooth learning path that teaches you how to get started with Natural Language Processing using Python and NLTK. You'll learn to create effective NLP and machine learning projects using Python and NLTK.

Natural Language Processing with Python

Download Natural Language Processing with Python PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 0596555717
Total Pages : 506 pages
Book Rating : 4.5/5 (965 download)

DOWNLOAD NOW!


Book Synopsis Natural Language Processing with Python by : Steven Bird

Download or read book Natural Language Processing with Python written by Steven Bird and published by "O'Reilly Media, Inc.". This book was released on 2009-06-12 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a highly accessible introduction to natural language processing, the field that supports a variety of language technologies, from predictive text and email filtering to automatic summarization and translation. With it, you'll learn how to write Python programs that work with large collections of unstructured text. You'll access richly annotated datasets using a comprehensive range of linguistic data structures, and you'll understand the main algorithms for analyzing the content and structure of written communication. Packed with examples and exercises, Natural Language Processing with Python will help you: Extract information from unstructured text, either to guess the topic or identify "named entities" Analyze linguistic structure in text, including parsing and semantic analysis Access popular linguistic databases, including WordNet and treebanks Integrate techniques drawn from fields as diverse as linguistics and artificial intelligence This book will help you gain practical skills in natural language processing using the Python programming language and the Natural Language Toolkit (NLTK) open source library. If you're interested in developing web applications, analyzing multilingual news sources, or documenting endangered languages -- or if you're simply curious to have a programmer's perspective on how human language works -- you'll find Natural Language Processing with Python both fascinating and immensely useful.

Python Natural Language Processing

Download Python Natural Language Processing PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1787285529
Total Pages : 476 pages
Book Rating : 4.7/5 (872 download)

DOWNLOAD NOW!


Book Synopsis Python Natural Language Processing by : Jalaj Thanaki

Download or read book Python Natural Language Processing written by Jalaj Thanaki and published by Packt Publishing Ltd. This book was released on 2017-07-31 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: Leverage the power of machine learning and deep learning to extract information from text data About This Book Implement Machine Learning and Deep Learning techniques for efficient natural language processing Get started with NLTK and implement NLP in your applications with ease Understand and interpret human languages with the power of text analysis via Python Who This Book Is For This book is intended for Python developers who wish to start with natural language processing and want to make their applications smarter by implementing NLP in them. What You Will Learn Focus on Python programming paradigms, which are used to develop NLP applications Understand corpus analysis and different types of data attribute. Learn NLP using Python libraries such as NLTK, Polyglot, SpaCy, Standford CoreNLP and so on Learn about Features Extraction and Feature selection as part of Features Engineering. Explore the advantages of vectorization in Deep Learning. Get a better understanding of the architecture of a rule-based system. Optimize and fine-tune Supervised and Unsupervised Machine Learning algorithms for NLP problems. Identify Deep Learning techniques for Natural Language Processing and Natural Language Generation problems. In Detail This book starts off by laying the foundation for Natural Language Processing and why Python is one of the best options to build an NLP-based expert system with advantages such as Community support, availability of frameworks and so on. Later it gives you a better understanding of available free forms of corpus and different types of dataset. After this, you will know how to choose a dataset for natural language processing applications and find the right NLP techniques to process sentences in datasets and understand their structure. You will also learn how to tokenize different parts of sentences and ways to analyze them. During the course of the book, you will explore the semantic as well as syntactic analysis of text. You will understand how to solve various ambiguities in processing human language and will come across various scenarios while performing text analysis. You will learn the very basics of getting the environment ready for natural language processing, move on to the initial setup, and then quickly understand sentences and language parts. You will learn the power of Machine Learning and Deep Learning to extract information from text data. By the end of the book, you will have a clear understanding of natural language processing and will have worked on multiple examples that implement NLP in the real world. Style and approach This book teaches the readers various aspects of natural language Processing using NLTK. It takes the reader from the basic to advance level in a smooth way.

Natural Language Processing with Python Quick Start Guide

Download Natural Language Processing with Python Quick Start Guide PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1788994108
Total Pages : 177 pages
Book Rating : 4.7/5 (889 download)

DOWNLOAD NOW!


Book Synopsis Natural Language Processing with Python Quick Start Guide by : Nirant Kasliwal

Download or read book Natural Language Processing with Python Quick Start Guide written by Nirant Kasliwal and published by Packt Publishing Ltd. This book was released on 2018-11-30 with total page 177 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build and deploy intelligent applications for natural language processing with Python by using industry standard tools and recently popular methods in deep learning Key FeaturesA no-math, code-driven programmer’s guide to text processing and NLPGet state of the art results with modern tooling across linguistics, text vectors and machine learningFundamentals of NLP methods from spaCy, gensim, scikit-learn and PyTorchBook Description NLP in Python is among the most sought after skills among data scientists. With code and relevant case studies, this book will show how you can use industry-grade tools to implement NLP programs capable of learning from relevant data. We will explore many modern methods ranging from spaCy to word vectors that have reinvented NLP. The book takes you from the basics of NLP to building text processing applications. We start with an introduction to the basic vocabulary along with a workflow for building NLP applications. We use industry-grade NLP tools for cleaning and pre-processing text, automatic question and answer generation using linguistics, text embedding, text classifier, and building a chatbot. With each project, you will learn a new concept of NLP. You will learn about entity recognition, part of speech tagging and dependency parsing for Q and A. We use text embedding for both clustering documents and making chatbots, and then build classifiers using scikit-learn. We conclude by deploying these models as REST APIs with Flask. By the end, you will be confident building NLP applications, and know exactly what to look for when approaching new challenges. What you will learnUnderstand classical linguistics in using English grammar for automatically generating questions and answers from a free text corpusWork with text embedding models for dense number representations of words, subwords and characters in the English language for exploring document clusteringDeep Learning in NLP using PyTorch with a code-driven introduction to PyTorchUsing an NLP project management Framework for estimating timelines and organizing your project into stagesHack and build a simple chatbot application in 30 minutesDeploy an NLP or machine learning application using Flask as RESTFUL APIsWho this book is for Programmers who wish to build systems that can interpret language. Exposure to Python programming is required. Familiarity with NLP or machine learning vocabulary will be helpful, but not mandatory.

Natural Language Processing with Python and spaCy

Download Natural Language Processing with Python and spaCy PDF Online Free

Author :
Publisher : No Starch Press
ISBN 13 : 171850053X
Total Pages : 217 pages
Book Rating : 4.7/5 (185 download)

DOWNLOAD NOW!


Book Synopsis Natural Language Processing with Python and spaCy by : Yuli Vasiliev

Download or read book Natural Language Processing with Python and spaCy written by Yuli Vasiliev and published by No Starch Press. This book was released on 2020-04-28 with total page 217 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to natural language processing with Python using spaCy, a leading Python natural language processing library. Natural Language Processing with Python and spaCy will show you how to create NLP applications like chatbots, text-condensing scripts, and order-processing tools quickly and easily. You'll learn how to leverage the spaCy library to extract meaning from text intelligently; how to determine the relationships between words in a sentence (syntactic dependency parsing); identify nouns, verbs, and other parts of speech (part-of-speech tagging); and sort proper nouns into categories like people, organizations, and locations (named entity recognizing). You'll even learn how to transform statements into questions to keep a conversation going. You'll also learn how to: • Work with word vectors to mathematically find words with similar meanings (Chapter 5) • Identify patterns within data using spaCy's built-in displaCy visualizer (Chapter 7) • Automatically extract keywords from user input and store them in a relational database (Chapter 9) • Deploy a chatbot app to interact with users over the internet (Chapter 11) "Try This" sections in each chapter encourage you to practice what you've learned by expanding the book's example scripts to handle a wider range of inputs, add error handling, and build professional-quality applications. By the end of the book, you'll be creating your own NLP applications with Python and spaCy.

Introduction to Natural Language Processing

Download Introduction to Natural Language Processing PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262042843
Total Pages : 535 pages
Book Rating : 4.2/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Natural Language Processing by : Jacob Eisenstein

Download or read book Introduction to Natural Language Processing written by Jacob Eisenstein and published by MIT Press. This book was released on 2019-10-01 with total page 535 pages. Available in PDF, EPUB and Kindle. Book excerpt: A survey of computational methods for understanding, generating, and manipulating human language, which offers a synthesis of classical representations and algorithms with contemporary machine learning techniques. This textbook provides a technical perspective on natural language processing—methods for building computer software that understands, generates, and manipulates human language. It emphasizes contemporary data-driven approaches, focusing on techniques from supervised and unsupervised machine learning. The first section establishes a foundation in machine learning by building a set of tools that will be used throughout the book and applying them to word-based textual analysis. The second section introduces structured representations of language, including sequences, trees, and graphs. The third section explores different approaches to the representation and analysis of linguistic meaning, ranging from formal logic to neural word embeddings. The final section offers chapter-length treatments of three transformative applications of natural language processing: information extraction, machine translation, and text generation. End-of-chapter exercises include both paper-and-pencil analysis and software implementation. The text synthesizes and distills a broad and diverse research literature, linking contemporary machine learning techniques with the field's linguistic and computational foundations. It is suitable for use in advanced undergraduate and graduate-level courses and as a reference for software engineers and data scientists. Readers should have a background in computer programming and college-level mathematics. After mastering the material presented, students will have the technical skill to build and analyze novel natural language processing systems and to understand the latest research in the field.

Mastering Transformers

Download Mastering Transformers PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1801078890
Total Pages : 374 pages
Book Rating : 4.8/5 (1 download)

DOWNLOAD NOW!


Book Synopsis Mastering Transformers by : Savaş Yıldırım

Download or read book Mastering Transformers written by Savaş Yıldırım and published by Packt Publishing Ltd. This book was released on 2021-09-15 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: Take a problem-solving approach to learning all about transformers and get up and running in no time by implementing methodologies that will build the future of NLP Key Features Explore quick prototyping with up-to-date Python libraries to create effective solutions to industrial problems Solve advanced NLP problems such as named-entity recognition, information extraction, language generation, and conversational AI Monitor your model's performance with the help of BertViz, exBERT, and TensorBoard Book DescriptionTransformer-based language models have dominated natural language processing (NLP) studies and have now become a new paradigm. With this book, you'll learn how to build various transformer-based NLP applications using the Python Transformers library. The book gives you an introduction to Transformers by showing you how to write your first hello-world program. You'll then learn how a tokenizer works and how to train your own tokenizer. As you advance, you'll explore the architecture of autoencoding models, such as BERT, and autoregressive models, such as GPT. You'll see how to train and fine-tune models for a variety of natural language understanding (NLU) and natural language generation (NLG) problems, including text classification, token classification, and text representation. This book also helps you to learn efficient models for challenging problems, such as long-context NLP tasks with limited computational capacity. You'll also work with multilingual and cross-lingual problems, optimize models by monitoring their performance, and discover how to deconstruct these models for interpretability and explainability. Finally, you'll be able to deploy your transformer models in a production environment. By the end of this NLP book, you'll have learned how to use Transformers to solve advanced NLP problems using advanced models.What you will learn Explore state-of-the-art NLP solutions with the Transformers library Train a language model in any language with any transformer architecture Fine-tune a pre-trained language model to perform several downstream tasks Select the right framework for the training, evaluation, and production of an end-to-end solution Get hands-on experience in using TensorBoard and Weights & Biases Visualize the internal representation of transformer models for interpretability Who this book is for This book is for deep learning researchers, hands-on NLP practitioners, as well as ML/NLP educators and students who want to start their journey with Transformers. Beginner-level machine learning knowledge and a good command of Python will help you get the best out of this book.

Natural Language Processing in Action

Download Natural Language Processing in Action PDF Online Free

Author :
Publisher : Simon and Schuster
ISBN 13 : 1638356890
Total Pages : 798 pages
Book Rating : 4.6/5 (383 download)

DOWNLOAD NOW!


Book Synopsis Natural Language Processing in Action by : Hannes Hapke

Download or read book Natural Language Processing in Action written by Hannes Hapke and published by Simon and Schuster. This book was released on 2019-03-16 with total page 798 pages. Available in PDF, EPUB and Kindle. Book excerpt: Summary Natural Language Processing in Action is your guide to creating machines that understand human language using the power of Python with its ecosystem of packages dedicated to NLP and AI. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Recent advances in deep learning empower applications to understand text and speech with extreme accuracy. The result? Chatbots that can imitate real people, meaningful resume-to-job matches, superb predictive search, and automatically generated document summaries—all at a low cost. New techniques, along with accessible tools like Keras and TensorFlow, make professional-quality NLP easier than ever before. About the Book Natural Language Processing in Action is your guide to building machines that can read and interpret human language. In it, you'll use readily available Python packages to capture the meaning in text and react accordingly. The book expands traditional NLP approaches to include neural networks, modern deep learning algorithms, and generative techniques as you tackle real-world problems like extracting dates and names, composing text, and answering free-form questions. What's inside Some sentences in this book were written by NLP! Can you guess which ones? Working with Keras, TensorFlow, gensim, and scikit-learn Rule-based and data-based NLP Scalable pipelines About the Reader This book requires a basic understanding of deep learning and intermediate Python skills. About the Author Hobson Lane, Cole Howard, and Hannes Max Hapke are experienced NLP engineers who use these techniques in production. Table of Contents PART 1 - WORDY MACHINES Packets of thought (NLP overview) Build your vocabulary (word tokenization) Math with words (TF-IDF vectors) Finding meaning in word counts (semantic analysis) PART 2 - DEEPER LEARNING (NEURAL NETWORKS) Baby steps with neural networks (perceptrons and backpropagation) Reasoning with word vectors (Word2vec) Getting words in order with convolutional neural networks (CNNs) Loopy (recurrent) neural networks (RNNs) Improving retention with long short-term memory networks Sequence-to-sequence models and attention PART 3 - GETTING REAL (REAL-WORLD NLP CHALLENGES) Information extraction (named entity extraction and question answering) Getting chatty (dialog engines) Scaling up (optimization, parallelization, and batch processing)

Hands-On Natural Language Processing with Python

Download Hands-On Natural Language Processing with Python PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1789135915
Total Pages : 307 pages
Book Rating : 4.7/5 (891 download)

DOWNLOAD NOW!


Book Synopsis Hands-On Natural Language Processing with Python by : Rajesh Arumugam

Download or read book Hands-On Natural Language Processing with Python written by Rajesh Arumugam and published by Packt Publishing Ltd. This book was released on 2018-07-18 with total page 307 pages. Available in PDF, EPUB and Kindle. Book excerpt: Foster your NLP applications with the help of deep learning, NLTK, and TensorFlow Key Features Weave neural networks into linguistic applications across various platforms Perform NLP tasks and train its models using NLTK and TensorFlow Boost your NLP models with strong deep learning architectures such as CNNs and RNNs Book Description Natural language processing (NLP) has found its application in various domains, such as web search, advertisements, and customer services, and with the help of deep learning, we can enhance its performances in these areas. Hands-On Natural Language Processing with Python teaches you how to leverage deep learning models for performing various NLP tasks, along with best practices in dealing with today’s NLP challenges. To begin with, you will understand the core concepts of NLP and deep learning, such as Convolutional Neural Networks (CNNs), recurrent neural networks (RNNs), semantic embedding, Word2vec, and more. You will learn how to perform each and every task of NLP using neural networks, in which you will train and deploy neural networks in your NLP applications. You will get accustomed to using RNNs and CNNs in various application areas, such as text classification and sequence labeling, which are essential in the application of sentiment analysis, customer service chatbots, and anomaly detection. You will be equipped with practical knowledge in order to implement deep learning in your linguistic applications using Python's popular deep learning library, TensorFlow. By the end of this book, you will be well versed in building deep learning-backed NLP applications, along with overcoming NLP challenges with best practices developed by domain experts. What you will learn Implement semantic embedding of words to classify and find entities Convert words to vectors by training in order to perform arithmetic operations Train a deep learning model to detect classification of tweets and news Implement a question-answer model with search and RNN models Train models for various text classification datasets using CNN Implement WaveNet a deep generative model for producing a natural-sounding voice Convert voice-to-text and text-to-voice Train a model to convert speech-to-text using DeepSpeech Who this book is for Hands-on Natural Language Processing with Python is for you if you are a developer, machine learning or an NLP engineer who wants to build a deep learning application that leverages NLP techniques. This comprehensive guide is also useful for deep learning users who want to extend their deep learning skills in building NLP applications. All you need is the basics of machine learning and Python to enjoy the book.

Mastering spaCy

Download Mastering spaCy PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1800561121
Total Pages : 356 pages
Book Rating : 4.8/5 (5 download)

DOWNLOAD NOW!


Book Synopsis Mastering spaCy by : Duygu Altinok

Download or read book Mastering spaCy written by Duygu Altinok and published by Packt Publishing Ltd. This book was released on 2021-07-09 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build end-to-end industrial-strength NLP models using advanced morphological and syntactic features in spaCy to create real-world applications with ease Key FeaturesGain an overview of what spaCy offers for natural language processingLearn details of spaCy's features and how to use them effectivelyWork through practical recipes using spaCyBook Description spaCy is an industrial-grade, efficient NLP Python library. It offers various pre-trained models and ready-to-use features. Mastering spaCy provides you with end-to-end coverage of spaCy's features and real-world applications. You'll begin by installing spaCy and downloading models, before progressing to spaCy's features and prototyping real-world NLP apps. Next, you'll get familiar with visualizing with spaCy's popular visualizer displaCy. The book also equips you with practical illustrations for pattern matching and helps you advance into the world of semantics with word vectors. Statistical information extraction methods are also explained in detail. Later, you'll cover an interactive business case study that shows you how to combine all spaCy features for creating a real-world NLP pipeline. You'll implement ML models such as sentiment analysis, intent recognition, and context resolution. The book further focuses on classification with popular frameworks such as TensorFlow's Keras API together with spaCy. You'll cover popular topics, including intent classification and sentiment analysis, and use them on popular datasets and interpret the classification results. By the end of this book, you'll be able to confidently use spaCy, including its linguistic features, word vectors, and classifiers, to create your own NLP apps. What you will learnInstall spaCy, get started easily, and write your first Python scriptUnderstand core linguistic operations of spaCyDiscover how to combine rule-based components with spaCy statistical modelsBecome well-versed with named entity and keyword extractionBuild your own ML pipelines using spaCyApply all the knowledge you've gained to design a chatbot using spaCyWho this book is for This book is for data scientists and machine learners who want to excel in NLP as well as NLP developers who want to master spaCy and build applications with it. Language and speech professionals who want to get hands-on with Python and spaCy and software developers who want to quickly prototype applications with spaCy will also find this book helpful. Beginner-level knowledge of the Python programming language is required to get the most out of this book. A beginner-level understanding of linguistics such as parsing, POS tags, and semantic similarity will also be useful.

Hands-On Python Natural Language Processing

Download Hands-On Python Natural Language Processing PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1838982582
Total Pages : 304 pages
Book Rating : 4.8/5 (389 download)

DOWNLOAD NOW!


Book Synopsis Hands-On Python Natural Language Processing by : Aman Kedia

Download or read book Hands-On Python Natural Language Processing written by Aman Kedia and published by Packt Publishing Ltd. This book was released on 2020-06-26 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: Get well-versed with traditional as well as modern natural language processing concepts and techniques Key FeaturesPerform various NLP tasks to build linguistic applications using Python librariesUnderstand, analyze, and generate text to provide accurate resultsInterpret human language using various NLP concepts, methodologies, and toolsBook Description Natural Language Processing (NLP) is the subfield in computational linguistics that enables computers to understand, process, and analyze text. This book caters to the unmet demand for hands-on training of NLP concepts and provides exposure to real-world applications along with a solid theoretical grounding. This book starts by introducing you to the field of NLP and its applications, along with the modern Python libraries that you'll use to build your NLP-powered apps. With the help of practical examples, you’ll learn how to build reasonably sophisticated NLP applications, and cover various methodologies and challenges in deploying NLP applications in the real world. You'll cover key NLP tasks such as text classification, semantic embedding, sentiment analysis, machine translation, and developing a chatbot using machine learning and deep learning techniques. The book will also help you discover how machine learning techniques play a vital role in making your linguistic apps smart. Every chapter is accompanied by examples of real-world applications to help you build impressive NLP applications of your own. By the end of this NLP book, you’ll be able to work with language data, use machine learning to identify patterns in text, and get acquainted with the advancements in NLP. What you will learnUnderstand how NLP powers modern applicationsExplore key NLP techniques to build your natural language vocabularyTransform text data into mathematical data structures and learn how to improve text mining modelsDiscover how various neural network architectures work with natural language dataGet the hang of building sophisticated text processing models using machine learning and deep learningCheck out state-of-the-art architectures that have revolutionized research in the NLP domainWho this book is for This NLP Python book is for anyone looking to learn NLP’s theoretical and practical aspects alike. It starts with the basics and gradually covers advanced concepts to make it easy to follow for readers with varying levels of NLP proficiency. This comprehensive guide will help you develop a thorough understanding of the NLP methodologies for building linguistic applications; however, working knowledge of Python programming language and high school level mathematics is expected.

Text Analytics with Python

Download Text Analytics with Python PDF Online Free

Author :
Publisher : Apress
ISBN 13 : 1484243544
Total Pages : 688 pages
Book Rating : 4.4/5 (842 download)

DOWNLOAD NOW!


Book Synopsis Text Analytics with Python by : Dipanjan Sarkar

Download or read book Text Analytics with Python written by Dipanjan Sarkar and published by Apress. This book was released on 2019-05-21 with total page 688 pages. Available in PDF, EPUB and Kindle. Book excerpt: Leverage Natural Language Processing (NLP) in Python and learn how to set up your own robust environment for performing text analytics. This second edition has gone through a major revamp and introduces several significant changes and new topics based on the recent trends in NLP. You’ll see how to use the latest state-of-the-art frameworks in NLP, coupled with machine learning and deep learning models for supervised sentiment analysis powered by Python to solve actual case studies. Start by reviewing Python for NLP fundamentals on strings and text data and move on to engineering representation methods for text data, including both traditional statistical models and newer deep learning-based embedding models. Improved techniques and new methods around parsing and processing text are discussed as well. Text summarization and topic models have been overhauled so the book showcases how to build, tune, and interpret topic models in the context of an interest dataset on NIPS conference papers. Additionally, the book covers text similarity techniques with a real-world example of movie recommenders, along with sentiment analysis using supervised and unsupervised techniques. There is also a chapter dedicated to semantic analysis where you’ll see how to build your own named entity recognition (NER) system from scratch. While the overall structure of the book remains the same, the entire code base, modules, and chapters has been updated to the latest Python 3.x release. What You'll Learn • Understand NLP and text syntax, semantics and structure• Discover text cleaning and feature engineering• Review text classification and text clustering • Assess text summarization and topic models• Study deep learning for NLP Who This Book Is For IT professionals, data analysts, developers, linguistic experts, data scientists and engineers and basically anyone with a keen interest in linguistics, analytics and generating insights from textual data.

Natural Language Processing with TensorFlow

Download Natural Language Processing with TensorFlow PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1788477758
Total Pages : 472 pages
Book Rating : 4.7/5 (884 download)

DOWNLOAD NOW!


Book Synopsis Natural Language Processing with TensorFlow by : Thushan Ganegedara

Download or read book Natural Language Processing with TensorFlow written by Thushan Ganegedara and published by Packt Publishing Ltd. This book was released on 2018-05-31 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: Write modern natural language processing applications using deep learning algorithms and TensorFlow Key Features Focuses on more efficient natural language processing using TensorFlow Covers NLP as a field in its own right to improve understanding for choosing TensorFlow tools and other deep learning approaches Provides choices for how to process and evaluate large unstructured text datasets Learn to apply the TensorFlow toolbox to specific tasks in the most interesting field in artificial intelligence Book Description Natural language processing (NLP) supplies the majority of data available to deep learning applications, while TensorFlow is the most important deep learning framework currently available. Natural Language Processing with TensorFlow brings TensorFlow and NLP together to give you invaluable tools to work with the immense volume of unstructured data in today’s data streams, and apply these tools to specific NLP tasks. Thushan Ganegedara starts by giving you a grounding in NLP and TensorFlow basics. You'll then learn how to use Word2vec, including advanced extensions, to create word embeddings that turn sequences of words into vectors accessible to deep learning algorithms. Chapters on classical deep learning algorithms, like convolutional neural networks (CNN) and recurrent neural networks (RNN), demonstrate important NLP tasks as sentence classification and language generation. You will learn how to apply high-performance RNN models, like long short-term memory (LSTM) cells, to NLP tasks. You will also explore neural machine translation and implement a neural machine translator. After reading this book, you will gain an understanding of NLP and you'll have the skills to apply TensorFlow in deep learning NLP applications, and how to perform specific NLP tasks. What you will learn Core concepts of NLP and various approaches to natural language processing How to solve NLP tasks by applying TensorFlow functions to create neural networks Strategies to process large amounts of data into word representations that can be used by deep learning applications Techniques for performing sentence classification and language generation using CNNs and RNNs About employing state-of-the art advanced RNNs, like long short-term memory, to solve complex text generation tasks How to write automatic translation programs and implement an actual neural machine translator from scratch The trends and innovations that are paving the future in NLP Who this book is for This book is for Python developers with a strong interest in deep learning, who want to learn how to leverage TensorFlow to simplify NLP tasks. Fundamental Python skills are assumed, as well as some knowledge of machine learning and undergraduate-level calculus and linear algebra. No previous natural language processing experience required, although some background in NLP or computational linguistics will be helpful.

Transformers for Natural Language Processing

Download Transformers for Natural Language Processing PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1800568630
Total Pages : 385 pages
Book Rating : 4.8/5 (5 download)

DOWNLOAD NOW!


Book Synopsis Transformers for Natural Language Processing by : Denis Rothman

Download or read book Transformers for Natural Language Processing written by Denis Rothman and published by Packt Publishing Ltd. This book was released on 2021-01-29 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: Publisher's Note: A new edition of this book is out now that includes working with GPT-3 and comparing the results with other models. It includes even more use cases, such as casual language analysis and computer vision tasks, as well as an introduction to OpenAI's Codex. Key FeaturesBuild and implement state-of-the-art language models, such as the original Transformer, BERT, T5, and GPT-2, using concepts that outperform classical deep learning modelsGo through hands-on applications in Python using Google Colaboratory Notebooks with nothing to install on a local machineTest transformer models on advanced use casesBook Description The transformer architecture has proved to be revolutionary in outperforming the classical RNN and CNN models in use today. With an apply-as-you-learn approach, Transformers for Natural Language Processing investigates in vast detail the deep learning for machine translations, speech-to-text, text-to-speech, language modeling, question answering, and many more NLP domains with transformers. The book takes you through NLP with Python and examines various eminent models and datasets within the transformer architecture created by pioneers such as Google, Facebook, Microsoft, OpenAI, and Hugging Face. The book trains you in three stages. The first stage introduces you to transformer architectures, starting with the original transformer, before moving on to RoBERTa, BERT, and DistilBERT models. You will discover training methods for smaller transformers that can outperform GPT-3 in some cases. In the second stage, you will apply transformers for Natural Language Understanding (NLU) and Natural Language Generation (NLG). Finally, the third stage will help you grasp advanced language understanding techniques such as optimizing social network datasets and fake news identification. By the end of this NLP book, you will understand transformers from a cognitive science perspective and be proficient in applying pretrained transformer models by tech giants to various datasets. What you will learnUse the latest pretrained transformer modelsGrasp the workings of the original Transformer, GPT-2, BERT, T5, and other transformer modelsCreate language understanding Python programs using concepts that outperform classical deep learning modelsUse a variety of NLP platforms, including Hugging Face, Trax, and AllenNLPApply Python, TensorFlow, and Keras programs to sentiment analysis, text summarization, speech recognition, machine translations, and moreMeasure the productivity of key transformers to define their scope, potential, and limits in productionWho this book is for Since the book does not teach basic programming, you must be familiar with neural networks, Python, PyTorch, and TensorFlow in order to learn their implementation with Transformers. Readers who can benefit the most from this book include experienced deep learning & NLP practitioners and data analysts & data scientists who want to process the increasing amounts of language-driven data.

Python Natural Language Processing Cookbook

Download Python Natural Language Processing Cookbook PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1838987789
Total Pages : 285 pages
Book Rating : 4.8/5 (389 download)

DOWNLOAD NOW!


Book Synopsis Python Natural Language Processing Cookbook by : Zhenya Antić

Download or read book Python Natural Language Processing Cookbook written by Zhenya Antić and published by Packt Publishing Ltd. This book was released on 2021-03-19 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt: Get to grips with solving real-world NLP problems, such as dependency parsing, information extraction, topic modeling, and text data visualization Key Features Analyze varying complexities of text using popular Python packages such as NLTK, spaCy, sklearn, and gensim Implement common and not-so-common linguistic processing tasks using Python libraries Overcome the common challenges faced while implementing NLP pipelines Book DescriptionPython is the most widely used language for natural language processing (NLP) thanks to its extensive tools and libraries for analyzing text and extracting computer-usable data. This book will take you through a range of techniques for text processing, from basics such as parsing the parts of speech to complex topics such as topic modeling, text classification, and visualization. Starting with an overview of NLP, the book presents recipes for dividing text into sentences, stemming and lemmatization, removing stopwords, and parts of speech tagging to help you to prepare your data. You’ll then learn ways of extracting and representing grammatical information, such as dependency parsing and anaphora resolution, discover different ways of representing the semantics using bag-of-words, TF-IDF, word embeddings, and BERT, and develop skills for text classification using keywords, SVMs, LSTMs, and other techniques. As you advance, you’ll also see how to extract information from text, implement unsupervised and supervised techniques for topic modeling, and perform topic modeling of short texts, such as tweets. Additionally, the book shows you how to develop chatbots using NLTK and Rasa and visualize text data. By the end of this NLP book, you’ll have developed the skills to use a powerful set of tools for text processing.What you will learn Become well-versed with basic and advanced NLP techniques in Python Represent grammatical information in text using spaCy, and semantic information using bag-of-words, TF-IDF, and word embeddings Perform text classification using different methods, including SVMs and LSTMs Explore different techniques for topic modeling such as K-means, LDA, NMF, and BERT Work with visualization techniques such as NER and word clouds for different NLP tools Build a basic chatbot using NLTK and Rasa Extract information from text using regular expression techniques and statistical and deep learning tools Who this book is for This book is for data scientists and professionals who want to learn how to work with text. Intermediate knowledge of Python will help you to make the most out of this book. If you are an NLP practitioner, this book will serve as a code reference when working on your projects.

Natural Language Processing with Transformers, Revised Edition

Download Natural Language Processing with Transformers, Revised Edition PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1098136764
Total Pages : 409 pages
Book Rating : 4.0/5 (981 download)

DOWNLOAD NOW!


Book Synopsis Natural Language Processing with Transformers, Revised Edition by : Lewis Tunstall

Download or read book Natural Language Processing with Transformers, Revised Edition written by Lewis Tunstall and published by "O'Reilly Media, Inc.". This book was released on 2022-05-26 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since their introduction in 2017, transformers have quickly become the dominant architecture for achieving state-of-the-art results on a variety of natural language processing tasks. If you're a data scientist or coder, this practical book -now revised in full color- shows you how to train and scale these large models using Hugging Face Transformers, a Python-based deep learning library. Transformers have been used to write realistic news stories, improve Google Search queries, and even create chatbots that tell corny jokes. In this guide, authors Lewis Tunstall, Leandro von Werra, and Thomas Wolf, among the creators of Hugging Face Transformers, use a hands-on approach to teach you how transformers work and how to integrate them in your applications. You'll quickly learn a variety of tasks they can help you solve. Build, debug, and optimize transformer models for core NLP tasks, such as text classification, named entity recognition, and question answering Learn how transformers can be used for cross-lingual transfer learning Apply transformers in real-world scenarios where labeled data is scarce Make transformer models efficient for deployment using techniques such as distillation, pruning, and quantization Train transformers from scratch and learn how to scale to multiple GPUs and distributed environments