Manifold: Space

Download Manifold: Space PDF Online Free

Author :
Publisher : Del Rey
ISBN 13 : 0345475585
Total Pages : 649 pages
Book Rating : 4.3/5 (454 download)

DOWNLOAD NOW!


Book Synopsis Manifold: Space by : Stephen Baxter

Download or read book Manifold: Space written by Stephen Baxter and published by Del Rey. This book was released on 2003-12-16 with total page 649 pages. Available in PDF, EPUB and Kindle. Book excerpt: “As always, [Stephen] Baxter plays with space and time with consummate skill. . . . He continues to be one of the leading writers of hard science fiction, and one of the most thought-provoking as well.”—Science Fiction Chronicle The year is 2020. Fueled by an insatiable curiosity, Reid Malenfant ventures to the far edge of the solar system, where he discovers a strange artifact left behind by an alien civilization: A gateway that functions as a kind of quantum transporter, allowing virtually instantaneous travel over the vast distances of interstellar space. What lies on the other side of the gateway? Malenfant decides to find out. Yet he will soon be faced with an impossible choice that will push him beyond terror, beyond sanity, beyond humanity itself. Meanwhile on Earth the Japanese scientist Nemoto fears her worst nightmares are coming true. Startling discoveries reveal that the Moon, Venus, even Mars once thrived with life—life that was snuffed out not just once but many times, in cycles of birth and destruction. And the next chilling cycle is set to begin again . . . “When the travel bug bites and usual planets don’t excite, perhaps it’s time to burst the bounds of this old solar system and really see the sights. . . . Baxter’s expansive new novel is just the ticket.”—The Washington Times “Breathtaking in its originality and scope.”—The Washington Post

Phase Space

Download Phase Space PDF Online Free

Author :
Publisher : HarperCollins UK
ISBN 13 : 0007387334
Total Pages : 387 pages
Book Rating : 4.0/5 (73 download)

DOWNLOAD NOW!


Book Synopsis Phase Space by : Stephen Baxter

Download or read book Phase Space written by Stephen Baxter and published by HarperCollins UK. This book was released on 2012-06-28 with total page 387 pages. Available in PDF, EPUB and Kindle. Book excerpt: 2025. Tied in to Baxter’s masterful Manifold trilogy, these thematically linked stories are drawn from the vast graph of possibilities across which the lives of hero Reid Malenfant have been scattered.

Origin

Download Origin PDF Online Free

Author :
Publisher : HarperCollins UK
ISBN 13 : 0007401140
Total Pages : 409 pages
Book Rating : 4.0/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Origin by : Stephen Baxter

Download or read book Origin written by Stephen Baxter and published by HarperCollins UK. This book was released on 2012-06-28 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: 2015: Astronaut Reid Malenfant is flying over the African continent, intent on examining a mysterious glowing construct in Earth’s orbit.

Space Manifold Dynamics

Download Space Manifold Dynamics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1441903488
Total Pages : 265 pages
Book Rating : 4.4/5 (419 download)

DOWNLOAD NOW!


Book Synopsis Space Manifold Dynamics by : Ettore Perozzi

Download or read book Space Manifold Dynamics written by Ettore Perozzi and published by Springer Science & Business Media. This book was released on 2010-07-23 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents an overview of the outcomes resulting from applying the dynamical systems approach to space mission design, a topic referred to as "Space Manifold Dynamics" (SMD). It is a natural follow-on to the international workshop "Novel Spaceways for Scientific and Exploration Missions," which was held in October 2007 at the Telespazio Fucino Space Centre (Italy) under the auspices of the Space OPS Academy. The benefits and drawbacks of using the Lagrangian points and the associated trajectories for present and future space missions are discussed. The related methods and algorithms are also described in detail. Each topic is presented in articles that were written as far as possible to be self consistent; the use of introductory sections and of extended explanations is included in order to address the different communities potentially interested in SMD: space science, the aerospace industry, manned and unmanned exploration, celestial mechanics, and flight dynamics.

Minkowski Space

Download Minkowski Space PDF Online Free

Author :
Publisher : Createspace Independent Publishing Platform
ISBN 13 : 9781533561688
Total Pages : 252 pages
Book Rating : 4.5/5 (616 download)

DOWNLOAD NOW!


Book Synopsis Minkowski Space by : Paul F. Kisak

Download or read book Minkowski Space written by Paul F. Kisak and published by Createspace Independent Publishing Platform. This book was released on 2016-05-25 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: In mathematical physics, Minkowski space or Minkowski spacetime is a combination of Euclidean space and time into a four-dimensional manifold where the spacetime interval between any two events is independent of the inertial frame of reference in which they are recorded. Although initially developed by mathematician Hermann Minkowski for Maxwell's equations of electromagnetism, the mathematical structure of Minkowski spacetime was shown to be an immediate consequence of the postulates of special relativity. Minkowski space is closely associated with Einstein's theory of special relativity, and is the most common mathematical structure on which special relativity is formulated. While the individual components in Euclidean space and time will often differ due to length contraction and time dilation, in Minkowski spacetime, all frames of reference will agree on the total distance in spacetime between events. Because it treats time differently than the three spatial dimensions, Minkowski space differs from four-dimensional Euclidean space. In Euclidean space, the isometry group (the maps preserving the regular inner product) is the Euclidean group. The analogous isometry group for Minkowski space, preserving intervals of spacetime equipped with the associated non-positive definite bilinear form (here called the Minkowski inner product, ) is the Poincare group. The Minkowski inner product is defined as to yield the spacetime interval between two events when given their coordinate difference vector as argument."

Manifolds, Sheaves, and Cohomology

Download Manifolds, Sheaves, and Cohomology PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3658106336
Total Pages : 366 pages
Book Rating : 4.6/5 (581 download)

DOWNLOAD NOW!


Book Synopsis Manifolds, Sheaves, and Cohomology by : Torsten Wedhorn

Download or read book Manifolds, Sheaves, and Cohomology written by Torsten Wedhorn and published by Springer. This book was released on 2016-07-25 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explains techniques that are essential in almost all branches of modern geometry such as algebraic geometry, complex geometry, or non-archimedian geometry. It uses the most accessible case, real and complex manifolds, as a model. The author especially emphasizes the difference between local and global questions. Cohomology theory of sheaves is introduced and its usage is illustrated by many examples.

Global Calculus

Download Global Calculus PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821837028
Total Pages : 330 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Global Calculus by : S. Ramanan

Download or read book Global Calculus written by S. Ramanan and published by American Mathematical Soc.. This book was released on 2005 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: The power that analysis, topology and algebra bring to geometry has revolutionised the way geometers and physicists look at conceptual problems. Some of the key ingredients in this interplay are sheaves, cohomology, Lie groups, connections and differential operators. In Global Calculus, the appropriate formalism for these topics is laid out with numerous examples and applications by one of the experts in differential and algebraic geometry. Ramanan has chosen an uncommon but natural path through the subject. In this almost completely self-contained account, these topics are developed from scratch. The basics of Fourier transforms, Sobolev theory and interior regularity are proved at the same time as symbol calculus, culminating in beautiful results in global analysis, real and complex. Many new perspectives on traditional and modern questions of differential analysis and geometry are the hallmarks of the book. The book is suitable for a first year graduate course on Global Analysis.

Sobolev Spaces on Riemannian Manifolds

Download Sobolev Spaces on Riemannian Manifolds PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3540699937
Total Pages : 126 pages
Book Rating : 4.5/5 (46 download)

DOWNLOAD NOW!


Book Synopsis Sobolev Spaces on Riemannian Manifolds by : Emmanuel Hebey

Download or read book Sobolev Spaces on Riemannian Manifolds written by Emmanuel Hebey and published by Springer. This book was released on 2006-11-14 with total page 126 pages. Available in PDF, EPUB and Kindle. Book excerpt: Several books deal with Sobolev spaces on open subsets of R (n), but none yet with Sobolev spaces on Riemannian manifolds, despite the fact that the theory of Sobolev spaces on Riemannian manifolds already goes back about 20 years. The book of Emmanuel Hebey will fill this gap, and become a necessary reading for all using Sobolev spaces on Riemannian manifolds. Hebey's presentation is very detailed, and includes the most recent developments due mainly to the author himself and to Hebey-Vaugon. He makes numerous things more precise, and discusses the hypotheses to test whether they can be weakened, and also presents new results.

An Introduction to Manifolds

Download An Introduction to Manifolds PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1441974008
Total Pages : 426 pages
Book Rating : 4.4/5 (419 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Manifolds by : Loring W. Tu

Download or read book An Introduction to Manifolds written by Loring W. Tu and published by Springer Science & Business Media. This book was released on 2010-10-05 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: Manifolds, the higher-dimensional analogs of smooth curves and surfaces, are fundamental objects in modern mathematics. Combining aspects of algebra, topology, and analysis, manifolds have also been applied to classical mechanics, general relativity, and quantum field theory. In this streamlined introduction to the subject, the theory of manifolds is presented with the aim of helping the reader achieve a rapid mastery of the essential topics. By the end of the book the reader should be able to compute, at least for simple spaces, one of the most basic topological invariants of a manifold, its de Rham cohomology. Along the way, the reader acquires the knowledge and skills necessary for further study of geometry and topology. The requisite point-set topology is included in an appendix of twenty pages; other appendices review facts from real analysis and linear algebra. Hints and solutions are provided to many of the exercises and problems. This work may be used as the text for a one-semester graduate or advanced undergraduate course, as well as by students engaged in self-study. Requiring only minimal undergraduate prerequisites, 'Introduction to Manifolds' is also an excellent foundation for Springer's GTM 82, 'Differential Forms in Algebraic Topology'.

The Wild World of 4-Manifolds

Download The Wild World of 4-Manifolds PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821837494
Total Pages : 642 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis The Wild World of 4-Manifolds by : Alexandru Scorpan

Download or read book The Wild World of 4-Manifolds written by Alexandru Scorpan and published by American Mathematical Soc.. This book was released on 2005-05-10 with total page 642 pages. Available in PDF, EPUB and Kindle. Book excerpt: What a wonderful book! I strongly recommend this book to anyone, especially graduate students, interested in getting a sense of 4-manifolds. --MAA Reviews The book gives an excellent overview of 4-manifolds, with many figures and historical notes. Graduate students, nonexperts, and experts alike will enjoy browsing through it. -- Robion C. Kirby, University of California, Berkeley This book offers a panorama of the topology of simply connected smooth manifolds of dimension four. Dimension four is unlike any other dimension; it is large enough to have room for wild things to happen, but small enough so that there is no room to undo the wildness. For example, only manifolds of dimension four can exhibit infinitely many distinct smooth structures. Indeed, their topology remains the least understood today. To put things in context, the book starts with a survey of higher dimensions and of topological 4-manifolds. In the second part, the main invariant of a 4-manifold--the intersection form--and its interaction with the topology of the manifold are investigated. In the third part, as an important source of examples, complex surfaces are reviewed. In the final fourth part of the book, gauge theory is presented; this differential-geometric method has brought to light how unwieldy smooth 4-manifolds truly are, and while bringing new insights, has raised more questions than answers. The structure of the book is modular, organized into a main track of about two hundred pages, augmented by extensive notes at the end of each chapter, where many extra details, proofs and developments are presented. To help the reader, the text is peppered with over 250 illustrations and has an extensive index.

Isometric Embedding of Riemannian Manifolds in Euclidean Spaces

Download Isometric Embedding of Riemannian Manifolds in Euclidean Spaces PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821840711
Total Pages : 278 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Isometric Embedding of Riemannian Manifolds in Euclidean Spaces by : Qing Han

Download or read book Isometric Embedding of Riemannian Manifolds in Euclidean Spaces written by Qing Han and published by American Mathematical Soc.. This book was released on 2006 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: The question of the existence of isometric embeddings of Riemannian manifolds in Euclidean space is already more than a century old. This book presents, in a systematic way, results both local and global and in arbitrary dimension but with a focus on the isometric embedding of surfaces in ${\mathbb R}^3$. The emphasis is on those PDE techniques which are essential to the most important results of the last century. The classic results in this book include the Janet-Cartan Theorem, Nirenberg's solution of the Weyl problem, and Nash's Embedding Theorem, with a simplified proof by Gunther. The book also includes the main results from the past twenty years, both local and global, on the isometric embedding of surfaces in Euclidean 3-space. The work will be indispensable to researchers in the area. Moreover, the authors integrate the results and techniques into a unified whole, providing a good entry point into the area for advanced graduate students or anyone interested in this subject. The authors avoid what is technically complicated. Background knowledge is kept to an essential minimum: a one-semester course in differential geometry and a one-year course in partial differential equations.

Smooth Manifolds and Observables

Download Smooth Manifolds and Observables PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030456501
Total Pages : 441 pages
Book Rating : 4.0/5 (34 download)

DOWNLOAD NOW!


Book Synopsis Smooth Manifolds and Observables by : Jet Nestruev

Download or read book Smooth Manifolds and Observables written by Jet Nestruev and published by Springer Nature. This book was released on 2020-09-10 with total page 441 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives an introduction to fiber spaces and differential operators on smooth manifolds. Over the last 20 years, the authors developed an algebraic approach to the subject and they explain in this book why differential calculus on manifolds can be considered as an aspect of commutative algebra. This new approach is based on the fundamental notion of observable which is used by physicists and will further the understanding of the mathematics underlying quantum field theory.

The Classifying Spaces for Surgery and Cobordism of Manifolds

Download The Classifying Spaces for Surgery and Cobordism of Manifolds PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 9780691082264
Total Pages : 300 pages
Book Rating : 4.0/5 (822 download)

DOWNLOAD NOW!


Book Synopsis The Classifying Spaces for Surgery and Cobordism of Manifolds by : Ib Madsen

Download or read book The Classifying Spaces for Surgery and Cobordism of Manifolds written by Ib Madsen and published by Princeton University Press. This book was released on 1979-11-21 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: Beginning with a general discussion of bordism, Professors Madsen and Milgram present the homotopy theory of the surgery classifying spaces and the classifying spaces for the various required bundle theories. The next part covers more recent work on the maps between these spaces and the properties of the PL and Top characteristic classes, and includes integrality theorems for topological and PL manifolds. Later chapters treat the integral cohomology of BPL and Btop. The authors conclude with a discussion of the PL and topological cobordism rings and a construction of the torsion-free generators.

Analysis On Manifolds

Download Analysis On Manifolds PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 042996269X
Total Pages : 381 pages
Book Rating : 4.4/5 (299 download)

DOWNLOAD NOW!


Book Synopsis Analysis On Manifolds by : James R. Munkres

Download or read book Analysis On Manifolds written by James R. Munkres and published by CRC Press. This book was released on 2018-02-19 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: A readable introduction to the subject of calculus on arbitrary surfaces or manifolds. Accessible to readers with knowledge of basic calculus and linear algebra. Sections include series of problems to reinforce concepts.

Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities

Download Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821827006
Total Pages : 306 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities by : Emmanuel Hebey

Download or read book Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities written by Emmanuel Hebey and published by American Mathematical Soc.. This book was released on 2000-10-27 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume offers an expanded version of lectures given at the Courant Institute on the theory of Sobolev spaces on Riemannian manifolds. ``Several surprising phenomena appear when studying Sobolev spaces on manifolds,'' according to the author. ``Questions that are elementary for Euclidean space become challenging and give rise to sophisticated mathematics, where the geometry of the manifold plays a central role.'' The volume is organized into nine chapters. Chapter 1 offers a brief introduction to differential and Riemannian geometry. Chapter 2 deals with the general theory of Sobolev spaces for compact manifolds. Chapter 3 presents the general theory of Sobolev spaces for complete, noncompact manifolds. Best constants problems for compact manifolds are discussed in Chapters 4 and 5. Chapter 6 presents special types of Sobolev inequalities under constraints. Best constants problems for complete noncompact manifolds are discussed in Chapter 7. Chapter 8 deals with Euclidean-type Sobolev inequalities. And Chapter 9 discusses the influence of symmetries on Sobolev embeddings. An appendix offers brief notes on the case of manifolds with boundaries. This topic is a field undergoing great development at this time. However, several important questions remain open. So a substantial part of the book is devoted to the concept of best constants, which appeared to be crucial for solving limiting cases of some classes of PDEs. The volume is highly self-contained. No familiarity is assumed with differentiable manifolds and Riemannian geometry, making the book accessible to a broad audience of readers, including graduate students and researchers.

Frobenius Manifolds and Moduli Spaces for Singularities

Download Frobenius Manifolds and Moduli Spaces for Singularities PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521812962
Total Pages : 292 pages
Book Rating : 4.8/5 (129 download)

DOWNLOAD NOW!


Book Synopsis Frobenius Manifolds and Moduli Spaces for Singularities by : Claus Hertling

Download or read book Frobenius Manifolds and Moduli Spaces for Singularities written by Claus Hertling and published by Cambridge University Press. This book was released on 2002-07-25 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the theory of Frobenius manifolds, as well as all the necessary tools and several applications.

Introduction to 3-Manifolds

Download Introduction to 3-Manifolds PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470410206
Total Pages : 298 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Introduction to 3-Manifolds by : Jennifer Schultens

Download or read book Introduction to 3-Manifolds written by Jennifer Schultens and published by American Mathematical Soc.. This book was released on 2014-05-21 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book grew out of a graduate course on 3-manifolds and is intended for a mathematically experienced audience that is new to low-dimensional topology. The exposition begins with the definition of a manifold, explores possible additional structures on manifolds, discusses the classification of surfaces, introduces key foundational results for 3-manifolds, and provides an overview of knot theory. It then continues with more specialized topics by briefly considering triangulations of 3-manifolds, normal surface theory, and Heegaard splittings. The book finishes with a discussion of topics relevant to viewing 3-manifolds via the curve complex. With about 250 figures and more than 200 exercises, this book can serve as an excellent overview and starting point for the study of 3-manifolds.