Advances in Machine Learning and Data Mining for Astronomy

Download Advances in Machine Learning and Data Mining for Astronomy PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1439841748
Total Pages : 744 pages
Book Rating : 4.4/5 (398 download)

DOWNLOAD NOW!


Book Synopsis Advances in Machine Learning and Data Mining for Astronomy by : Michael J. Way

Download or read book Advances in Machine Learning and Data Mining for Astronomy written by Michael J. Way and published by CRC Press. This book was released on 2012-03-29 with total page 744 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Machine Learning and Data Mining for Astronomy documents numerous successful collaborations among computer scientists, statisticians, and astronomers who illustrate the application of state-of-the-art machine learning and data mining techniques in astronomy. Due to the massive amount and complexity of data in most scientific disciplines

Statistics, Data Mining, and Machine Learning in Astronomy

Download Statistics, Data Mining, and Machine Learning in Astronomy PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 0691151687
Total Pages : 550 pages
Book Rating : 4.6/5 (911 download)

DOWNLOAD NOW!


Book Synopsis Statistics, Data Mining, and Machine Learning in Astronomy by : Željko Ivezić

Download or read book Statistics, Data Mining, and Machine Learning in Astronomy written by Željko Ivezić and published by Princeton University Press. This book was released on 2014-01-12 with total page 550 pages. Available in PDF, EPUB and Kindle. Book excerpt: As telescopes, detectors, and computers grow ever more powerful, the volume of data at the disposal of astronomers and astrophysicists will enter the petabyte domain, providing accurate measurements for billions of celestial objects. This book provides a comprehensive and accessible introduction to the cutting-edge statistical methods needed to efficiently analyze complex data sets from astronomical surveys such as the Panoramic Survey Telescope and Rapid Response System, the Dark Energy Survey, and the upcoming Large Synoptic Survey Telescope. It serves as a practical handbook for graduate students and advanced undergraduates in physics and astronomy, and as an indispensable reference for researchers. Statistics, Data Mining, and Machine Learning in Astronomy presents a wealth of practical analysis problems, evaluates techniques for solving them, and explains how to use various approaches for different types and sizes of data sets. For all applications described in the book, Python code and example data sets are provided. The supporting data sets have been carefully selected from contemporary astronomical surveys (for example, the Sloan Digital Sky Survey) and are easy to download and use. The accompanying Python code is publicly available, well documented, and follows uniform coding standards. Together, the data sets and code enable readers to reproduce all the figures and examples, evaluate the methods, and adapt them to their own fields of interest. Describes the most useful statistical and data-mining methods for extracting knowledge from huge and complex astronomical data sets Features real-world data sets from contemporary astronomical surveys Uses a freely available Python codebase throughout Ideal for students and working astronomers

Intelligent Astrophysics

Download Intelligent Astrophysics PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030658678
Total Pages : 300 pages
Book Rating : 4.0/5 (36 download)

DOWNLOAD NOW!


Book Synopsis Intelligent Astrophysics by : Ivan Zelinka

Download or read book Intelligent Astrophysics written by Ivan Zelinka and published by Springer Nature. This book was released on 2021-04-15 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: This present book discusses the application of the methods to astrophysical data from different perspectives. In this book, the reader will encounter interesting chapters that discuss data processing and pulsars, the complexity and information content of our universe, the use of tessellation in astronomy, characterization and classification of astronomical phenomena, identification of extragalactic objects, classification of pulsars and many other interesting chapters. The authors of these chapters are experts in their field and have been carefully selected to create this book so that the authors present to the community a representative publication that shows a unique fusion of artificial intelligence and astrophysics.

Machine Learning for Astrophysics

Download Machine Learning for Astrophysics PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031341678
Total Pages : 206 pages
Book Rating : 4.0/5 (313 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning for Astrophysics by : Filomena Bufano

Download or read book Machine Learning for Astrophysics written by Filomena Bufano and published by Springer Nature. This book was released on 2023-11-15 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reviews the state of the art in the exploitation of machine learning techniques for the astrophysics community and gives the reader a complete overview of the field. The contributed chapters allow the reader to easily digest the material through balanced theoretical and numerical methods and tools with applications in different fields of theoretical and observational astronomy. The book helps the reader to really understand and quantify both the opportunities and limitations of using machine learning in several fields of astrophysics.

Machine Learning with Neural Networks

Download Machine Learning with Neural Networks PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108849563
Total Pages : 262 pages
Book Rating : 4.1/5 (88 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning with Neural Networks by : Bernhard Mehlig

Download or read book Machine Learning with Neural Networks written by Bernhard Mehlig and published by Cambridge University Press. This book was released on 2021-10-28 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: This modern and self-contained book offers a clear and accessible introduction to the important topic of machine learning with neural networks. In addition to describing the mathematical principles of the topic, and its historical evolution, strong connections are drawn with underlying methods from statistical physics and current applications within science and engineering. Closely based around a well-established undergraduate course, this pedagogical text provides a solid understanding of the key aspects of modern machine learning with artificial neural networks, for students in physics, mathematics, and engineering. Numerous exercises expand and reinforce key concepts within the book and allow students to hone their programming skills. Frequent references to current research develop a detailed perspective on the state-of-the-art in machine learning research.

Machine Learning Techniques for Space Weather

Download Machine Learning Techniques for Space Weather PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0128117893
Total Pages : 454 pages
Book Rating : 4.1/5 (281 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning Techniques for Space Weather by : Enrico Camporeale

Download or read book Machine Learning Techniques for Space Weather written by Enrico Camporeale and published by Elsevier. This book was released on 2018-05-31 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine Learning Techniques for Space Weather provides a thorough and accessible presentation of machine learning techniques that can be employed by space weather professionals. Additionally, it presents an overview of real-world applications in space science to the machine learning community, offering a bridge between the fields. As this volume demonstrates, real advances in space weather can be gained using nontraditional approaches that take into account nonlinear and complex dynamics, including information theory, nonlinear auto-regression models, neural networks and clustering algorithms. Offering practical techniques for translating the huge amount of information hidden in data into useful knowledge that allows for better prediction, this book is a unique and important resource for space physicists, space weather professionals and computer scientists in related fields. - Collects many representative non-traditional approaches to space weather into a single volume - Covers, in an accessible way, the mathematical background that is not often explained in detail for space scientists - Includes free software in the form of simple MATLAB® scripts that allow for replication of results in the book, also familiarizing readers with algorithms

Machine Learning for Planetary Science

Download Machine Learning for Planetary Science PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0128187220
Total Pages : 234 pages
Book Rating : 4.1/5 (281 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning for Planetary Science by : Joern Helbert

Download or read book Machine Learning for Planetary Science written by Joern Helbert and published by Elsevier. This book was released on 2022-03-22 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine Learning for Planetary Science presents planetary scientists with a way to introduce machine learning into the research workflow as increasingly large nonlinear datasets are acquired from planetary exploration missions. The book explores research that leverages machine learning methods to enhance our scientific understanding of planetary data and serves as a guide for selecting the right methods and tools for solving a variety of everyday problems in planetary science using machine learning. Illustrating ways to employ machine learning in practice with case studies, the book is clearly organized into four parts to provide thorough context and easy navigation. The book covers a range of issues, from data analysis on the ground to data analysis onboard a spacecraft, and from prioritization of novel or interesting observations to enhanced missions planning. This book is therefore a key resource for planetary scientists working in data analysis, missions planning, and scientific observation. - Includes links to a code repository for sharing codes and examples, some of which include executable Jupyter notebook files that can serve as tutorials - Presents methods applicable to everyday problems faced by planetary scientists and sufficient for analyzing large datasets - Serves as a guide for selecting the right method and tools for applying machine learning to particular analysis problems - Utilizes case studies to illustrate how machine learning methods can be employed in practice

Knowledge Discovery in Big Data from Astronomy and Earth Observation

Download Knowledge Discovery in Big Data from Astronomy and Earth Observation PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0128191554
Total Pages : 474 pages
Book Rating : 4.1/5 (281 download)

DOWNLOAD NOW!


Book Synopsis Knowledge Discovery in Big Data from Astronomy and Earth Observation by : Petr Skoda

Download or read book Knowledge Discovery in Big Data from Astronomy and Earth Observation written by Petr Skoda and published by Elsevier. This book was released on 2020-04-10 with total page 474 pages. Available in PDF, EPUB and Kindle. Book excerpt: Knowledge Discovery in Big Data from Astronomy and Earth Observation: Astrogeoinformatics bridges the gap between astronomy and geoscience in the context of applications, techniques and key principles of big data. Machine learning and parallel computing are increasingly becoming cross-disciplinary as the phenomena of Big Data is becoming common place. This book provides insight into the common workflows and data science tools used for big data in astronomy and geoscience. After establishing similarity in data gathering, pre-processing and handling, the data science aspects are illustrated in the context of both fields. Software, hardware and algorithms of big data are addressed. Finally, the book offers insight into the emerging science which combines data and expertise from both fields in studying the effect of cosmos on the earth and its inhabitants. - Addresses both astronomy and geosciences in parallel, from a big data perspective - Includes introductory information, key principles, applications and the latest techniques - Well-supported by computing and information science-oriented chapters to introduce the necessary knowledge in these fields

Machine Learning for Physics and Astronomy

Download Machine Learning for Physics and Astronomy PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 0691249539
Total Pages : 281 pages
Book Rating : 4.6/5 (912 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning for Physics and Astronomy by : Viviana Acquaviva

Download or read book Machine Learning for Physics and Astronomy written by Viviana Acquaviva and published by Princeton University Press. This book was released on 2023-05-23 with total page 281 pages. Available in PDF, EPUB and Kindle. Book excerpt: A hands-on introduction to machine learning and its applications to the physical sciences As the size and complexity of data continue to grow exponentially across the physical sciences, machine learning is helping scientists to sift through and analyze this information while driving breathtaking advances in quantum physics, astronomy, cosmology, and beyond. This incisive textbook covers the basics of building, diagnosing, optimizing, and deploying machine learning methods to solve research problems in physics and astronomy, with an emphasis on critical thinking and the scientific method. Using a hands-on approach to learning, Machine Learning for Physics and Astronomy draws on real-world, publicly available data as well as examples taken directly from the frontiers of research, from identifying galaxy morphology from images to identifying the signature of standard model particles in simulations at the Large Hadron Collider. Introduces readers to best practices in data-driven problem-solving, from preliminary data exploration and cleaning to selecting the best method for a given task Each chapter is accompanied by Jupyter Notebook worksheets in Python that enable students to explore key concepts Includes a wealth of review questions and quizzes Ideal for advanced undergraduate and early graduate students in STEM disciplines such as physics, computer science, engineering, and applied mathematics Accessible to self-learners with a basic knowledge of linear algebra and calculus Slides and assessment questions (available only to instructors)

The Principles of Deep Learning Theory

Download The Principles of Deep Learning Theory PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1316519333
Total Pages : 473 pages
Book Rating : 4.3/5 (165 download)

DOWNLOAD NOW!


Book Synopsis The Principles of Deep Learning Theory by : Daniel A. Roberts

Download or read book The Principles of Deep Learning Theory written by Daniel A. Roberts and published by Cambridge University Press. This book was released on 2022-05-26 with total page 473 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume develops an effective theory approach to understanding deep neural networks of practical relevance.

Advances in Subsurface Data Analytics

Download Advances in Subsurface Data Analytics PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0128223081
Total Pages : 378 pages
Book Rating : 4.1/5 (282 download)

DOWNLOAD NOW!


Book Synopsis Advances in Subsurface Data Analytics by : Shuvajit Bhattacharya

Download or read book Advances in Subsurface Data Analytics written by Shuvajit Bhattacharya and published by Elsevier. This book was released on 2022-05-18 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Subsurface Data Analytics: Traditional and Physics-Based Approaches brings together the fundamentals of popular and emerging machine learning (ML) algorithms with their applications in subsurface analysis, including geology, geophysics, petrophysics, and reservoir engineering. The book is divided into four parts: traditional ML, deep learning, physics-based ML, and new directions, with an increasing level of diversity and complexity of topics. Each chapter focuses on one ML algorithm with a detailed workflow for a specific application in geosciences. Some chapters also compare the results from an algorithm with others to better equip the readers with different strategies to implement automated workflows for subsurface analysis. Advances in Subsurface Data Analytics: Traditional and Physics-Based Approaches will help researchers in academia and professional geoscientists working on the subsurface-related problems (oil and gas, geothermal, carbon sequestration, and seismology) at different scales to understand and appreciate current trends in ML approaches, their applications, advances and limitations, and future potential in geosciences by bringing together several contributions in a single volume. - Covers fundamentals of simple machine learning and deep learning algorithms, and physics-based approaches written by practitioners in academia and industry - Presents detailed case studies of individual machine learning algorithms and optimal strategies in subsurface characterization around the world - Offers an analysis of future trends in machine learning in geosciences

A Citizen's Guide to Artificial Intelligence

Download A Citizen's Guide to Artificial Intelligence PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262044811
Total Pages : 233 pages
Book Rating : 4.2/5 (62 download)

DOWNLOAD NOW!


Book Synopsis A Citizen's Guide to Artificial Intelligence by : John Zerilli

Download or read book A Citizen's Guide to Artificial Intelligence written by John Zerilli and published by MIT Press. This book was released on 2021-02-23 with total page 233 pages. Available in PDF, EPUB and Kindle. Book excerpt: A concise but informative overview of AI ethics and policy. Artificial intelligence, or AI for short, has generated a staggering amount of hype in the past several years. Is it the game-changer it's been cracked up to be? If so, how is it changing the game? How is it likely to affect us as customers, tenants, aspiring home-owners, students, educators, patients, clients, prison inmates, members of ethnic and sexual minorities, voters in liberal democracies? This book offers a concise overview of moral, political, legal and economic implications of AI. It covers the basics of AI's latest permutation, machine learning, and considers issues including transparency, bias, liability, privacy, and regulation.

Machine Learning

Download Machine Learning PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0128157402
Total Pages : 412 pages
Book Rating : 4.1/5 (281 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning by : Andrea Mechelli

Download or read book Machine Learning written by Andrea Mechelli and published by Academic Press. This book was released on 2019-11-14 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine Learning is an area of artificial intelligence involving the development of algorithms to discover trends and patterns in existing data; this information can then be used to make predictions on new data. A growing number of researchers and clinicians are using machine learning methods to develop and validate tools for assisting the diagnosis and treatment of patients with brain disorders. Machine Learning: Methods and Applications to Brain Disorders provides an up-to-date overview of how these methods can be applied to brain disorders, including both psychiatric and neurological disease. This book is written for a non-technical audience, such as neuroscientists, psychologists, psychiatrists, neurologists and health care practitioners. - Provides a non-technical introduction to machine learning and applications to brain disorders - Includes a detailed description of the most commonly used machine learning algorithms as well as some novel and promising approaches - Covers the main methodological challenges in the application of machine learning to brain disorders - Provides a step-by-step tutorial for implementing a machine learning pipeline to neuroimaging data in Python

Data-Driven Science and Engineering

Download Data-Driven Science and Engineering PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1009098489
Total Pages : 615 pages
Book Rating : 4.0/5 (9 download)

DOWNLOAD NOW!


Book Synopsis Data-Driven Science and Engineering by : Steven L. Brunton

Download or read book Data-Driven Science and Engineering written by Steven L. Brunton and published by Cambridge University Press. This book was released on 2022-05-05 with total page 615 pages. Available in PDF, EPUB and Kindle. Book excerpt: A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.

Astronomical Optics

Download Astronomical Optics PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 032313856X
Total Pages : 367 pages
Book Rating : 4.3/5 (231 download)

DOWNLOAD NOW!


Book Synopsis Astronomical Optics by : Daniel J. Schroeder

Download or read book Astronomical Optics written by Daniel J. Schroeder and published by Elsevier. This book was released on 2012-12-02 with total page 367 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by a recognized expert in the field, this clearly presented, well-illustrated book provides both advanced level students and professionals with an authoritative, thorough presentation of the characteristics, including advantages and limitations, of telescopes and spectrographic instruments used by astronomers of today. - Written by a recognized expert in the field - Provides both advanced level students and professionals with an authoritative, thorough presentation of the characteristics, including advantages and limitations, of telescopes and spectrographic instruments used by astronomers of today

Machine Learning and Data Science in the Power Generation Industry

Download Machine Learning and Data Science in the Power Generation Industry PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0128226005
Total Pages : 276 pages
Book Rating : 4.1/5 (282 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning and Data Science in the Power Generation Industry by : Patrick Bangert

Download or read book Machine Learning and Data Science in the Power Generation Industry written by Patrick Bangert and published by Elsevier. This book was released on 2021-01-14 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine Learning and Data Science in the Power Generation Industry explores current best practices and quantifies the value-add in developing data-oriented computational programs in the power industry, with a particular focus on thoughtfully chosen real-world case studies. It provides a set of realistic pathways for organizations seeking to develop machine learning methods, with a discussion on data selection and curation as well as organizational implementation in terms of staffing and continuing operationalization. It articulates a body of case study–driven best practices, including renewable energy sources, the smart grid, and the finances around spot markets, and forecasting. - Provides best practices on how to design and set up ML projects in power systems, including all nontechnological aspects necessary to be successful - Explores implementation pathways, explaining key ML algorithms and approaches as well as the choices that must be made, how to make them, what outcomes may be expected, and how the data must be prepared for them - Determines the specific data needs for the collection, processing, and operationalization of data within machine learning algorithms for power systems - Accompanied by numerous supporting real-world case studies, providing practical evidence of both best practices and potential pitfalls

Applied Deep Learning

Download Applied Deep Learning PDF Online Free

Author :
Publisher : Apress
ISBN 13 : 1484237900
Total Pages : 425 pages
Book Rating : 4.4/5 (842 download)

DOWNLOAD NOW!


Book Synopsis Applied Deep Learning by : Umberto Michelucci

Download or read book Applied Deep Learning written by Umberto Michelucci and published by Apress. This book was released on 2018-09-07 with total page 425 pages. Available in PDF, EPUB and Kindle. Book excerpt: Work with advanced topics in deep learning, such as optimization algorithms, hyper-parameter tuning, dropout, and error analysis as well as strategies to address typical problems encountered when training deep neural networks. You’ll begin by studying the activation functions mostly with a single neuron (ReLu, sigmoid, and Swish), seeing how to perform linear and logistic regression using TensorFlow, and choosing the right cost function. The next section talks about more complicated neural network architectures with several layers and neurons and explores the problem of random initialization of weights. An entire chapter is dedicated to a complete overview of neural network error analysis, giving examples of solving problems originating from variance, bias, overfitting, and datasets coming from different distributions. Applied Deep Learning also discusses how to implement logistic regression completely from scratch without using any Python library except NumPy, to let you appreciate how libraries such as TensorFlow allow quick and efficient experiments. Case studies for each method are included to put into practice all theoretical information. You’ll discover tips and tricks for writing optimized Python code (for example vectorizing loops with NumPy). What You Will Learn Implement advanced techniques in the right way in Python and TensorFlow Debug and optimize advanced methods (such as dropout and regularization) Carry out error analysis (to realize if one has a bias problem, a variance problem, a data offset problem, and so on) Set up a machine learning project focused on deep learning on a complex dataset Who This Book Is For Readers with a medium understanding of machine learning, linear algebra, calculus, and basic Python programming.