Functional Analysis, Sobolev Spaces and Partial Differential Equations

Download Functional Analysis, Sobolev Spaces and Partial Differential Equations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387709142
Total Pages : 600 pages
Book Rating : 4.3/5 (877 download)

DOWNLOAD NOW!


Book Synopsis Functional Analysis, Sobolev Spaces and Partial Differential Equations by : Haim Brezis

Download or read book Functional Analysis, Sobolev Spaces and Partial Differential Equations written by Haim Brezis and published by Springer Science & Business Media. This book was released on 2010-11-02 with total page 600 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is a completely revised, updated, and expanded English edition of the important Analyse fonctionnelle (1983). In addition, it contains a wealth of problems and exercises (with solutions) to guide the reader. Uniquely, this book presents in a coherent, concise and unified way the main results from functional analysis together with the main results from the theory of partial differential equations (PDEs). Although there are many books on functional analysis and many on PDEs, this is the first to cover both of these closely connected topics. Since the French book was first published, it has been translated into Spanish, Italian, Japanese, Korean, Romanian, Greek and Chinese. The English edition makes a welcome addition to this list.

Functional Spaces for the Theory of Elliptic Partial Differential Equations

Download Functional Spaces for the Theory of Elliptic Partial Differential Equations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1447128079
Total Pages : 480 pages
Book Rating : 4.4/5 (471 download)

DOWNLOAD NOW!


Book Synopsis Functional Spaces for the Theory of Elliptic Partial Differential Equations by : Françoise Demengel

Download or read book Functional Spaces for the Theory of Elliptic Partial Differential Equations written by Françoise Demengel and published by Springer Science & Business Media. This book was released on 2012-01-24 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of elliptic boundary problems is fundamental in analysis and the role of spaces of weakly differentiable functions (also called Sobolev spaces) is essential in this theory as a tool for analysing the regularity of the solutions. This book offers on the one hand a complete theory of Sobolev spaces, which are of fundamental importance for elliptic linear and non-linear differential equations, and explains on the other hand how the abstract methods of convex analysis can be combined with this theory to produce existence results for the solutions of non-linear elliptic boundary problems. The book also considers other kinds of functional spaces which are useful for treating variational problems such as the minimal surface problem. The main purpose of the book is to provide a tool for graduate and postgraduate students interested in partial differential equations, as well as a useful reference for researchers active in the field. Prerequisites include a knowledge of classical analysis, differential calculus, Banach and Hilbert spaces, integration and the related standard functional spaces, as well as the Fourier transformation on the Schwartz space. There are complete and detailed proofs of almost all the results announced and, in some cases, more than one proof is provided in order to highlight different features of the result. Each chapter concludes with a range of exercises of varying levels of difficulty, with hints to solutions provided for many of them.

Differential Equations on Measures and Functional Spaces

Download Differential Equations on Measures and Functional Spaces PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3030033775
Total Pages : 536 pages
Book Rating : 4.0/5 (3 download)

DOWNLOAD NOW!


Book Synopsis Differential Equations on Measures and Functional Spaces by : Vassili Kolokoltsov

Download or read book Differential Equations on Measures and Functional Spaces written by Vassili Kolokoltsov and published by Springer. This book was released on 2019-06-20 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt: This advanced book focuses on ordinary differential equations (ODEs) in Banach and more general locally convex spaces, most notably the ODEs on measures and various function spaces. It briefly discusses the fundamentals before moving on to the cutting edge research in linear and nonlinear partial and pseudo-differential equations, general kinetic equations and fractional evolutions. The level of generality chosen is suitable for the study of the most important nonlinear equations of mathematical physics, such as Boltzmann, Smoluchovskii, Vlasov, Landau-Fokker-Planck, Cahn-Hilliard, Hamilton-Jacobi-Bellman, nonlinear Schroedinger, McKean-Vlasov diffusions and their nonlocal extensions, mass-action-law kinetics from chemistry. It also covers nonlinear evolutions arising in evolutionary biology and mean-field games, optimization theory, epidemics and system biology, in general models of interacting particles or agents describing splitting and merging, collisions and breakage, mutations and the preferential-attachment growth on networks. The book is intended mainly for upper undergraduate and graduate students, but is also of use to researchers in differential equations and their applications. It particularly highlights the interconnections between various topics revealing where and how a particular result is used in other chapters or may be used in other contexts, and also clarifies the links between the languages of pseudo-differential operators, generalized functions, operator theory, abstract linear spaces, fractional calculus and path integrals.

Linear Differential Equations and Function Spaces

Download Linear Differential Equations and Function Spaces PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0080873332
Total Pages : 425 pages
Book Rating : 4.0/5 (88 download)

DOWNLOAD NOW!


Book Synopsis Linear Differential Equations and Function Spaces by :

Download or read book Linear Differential Equations and Function Spaces written by and published by Academic Press. This book was released on 2011-08-29 with total page 425 pages. Available in PDF, EPUB and Kindle. Book excerpt: Linear Differential Equations and Function Spaces

Linear Equations in Banach Spaces

Download Linear Equations in Banach Spaces PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1468480685
Total Pages : 112 pages
Book Rating : 4.4/5 (684 download)

DOWNLOAD NOW!


Book Synopsis Linear Equations in Banach Spaces by : KREIN

Download or read book Linear Equations in Banach Spaces written by KREIN and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 112 pages. Available in PDF, EPUB and Kindle. Book excerpt: INTRODUCTION . . . . . . xiii § 1. LINEAR EQUATIONS. BASIC NOTIONS . 3 § 2. EQUATIONS WITH A CLOSED OPERATOR 6 § 3. THE ADJOINT EQUATION . . . . . . 10 § 4. THE EQUATION ADJOINT TO THE FACTORED EQUATION. 17 § 5. AN EQUATION WITH A CLOSED OPERATOR WHICH HAS A DENSE DOMAIN 18 NORMALLY SOLVABLE EQUATIONS WITH FINITE DIMENSIONAL KERNEL. 22 § 6. A PRIORI ESTIMATES .. . . . . . 24 § 7. EQUATIONS WITH FINITE DEFECT . . . 27 § 8. § 9. SOME DIFFERENT ADJOINT EQUATIONS . 30 § 10. LINEAR TRANSFORMATIONS OF EQUATIONS 33 TRANSFORMATIONS OF d-NORMAL EQUATIONS . 38 § 11. § 12. NOETHERIAN EQUATIONS. INDEX. . . . . . 42 § 13. EQUATIONS WITH OPERATORS WHICH ACT IN A SINGLE SPACE 44 § 14. FREDHOLM EQUATIONS. REGULARIZATION OF EQUATIONS 46 § 15. LINEAR CHANGES OF VARIABLE . . . . . . . . 50 § 16. STABILITY OF THE PROPERTIES OF AN EQUATION 53 OVERDETERMINED EQUATIONS 59 § 17. § 18. UNDETERMINED EQUATIONS 62 § 19. INTEGRAL EQUATIONS . . . 65 DIFFERENTIAL EQUATIONS . 80 § 20. APPENDIX. BASIC RESULTS FROM FUNCTIONAL ANALYSIS USED IN THE TEXT 95 LITERATURE CITED . . . . . . . . . . . . . . . . . . .. . . . 99 . . PRE F ACE The basic material appearing in this book represents the substance v of a special series of lectures given by the author at Voronez University in 1968/69, and, in part, at Dagestan University in 1970.

Finite Difference Methods for Ordinary and Partial Differential Equations

Download Finite Difference Methods for Ordinary and Partial Differential Equations PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 9780898717839
Total Pages : 356 pages
Book Rating : 4.7/5 (178 download)

DOWNLOAD NOW!


Book Synopsis Finite Difference Methods for Ordinary and Partial Differential Equations by : Randall J. LeVeque

Download or read book Finite Difference Methods for Ordinary and Partial Differential Equations written by Randall J. LeVeque and published by SIAM. This book was released on 2007-01-01 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.

Locally Convex Spaces and Linear Partial Differential Equations

Download Locally Convex Spaces and Linear Partial Differential Equations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642873715
Total Pages : 132 pages
Book Rating : 4.6/5 (428 download)

DOWNLOAD NOW!


Book Synopsis Locally Convex Spaces and Linear Partial Differential Equations by : François Treves

Download or read book Locally Convex Spaces and Linear Partial Differential Equations written by François Treves and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 132 pages. Available in PDF, EPUB and Kindle. Book excerpt: It is hardly an exaggeration to say that, if the study of general topolog ical vector spaces is justified at all, it is because of the needs of distribu tion and Linear PDE * theories (to which one may add the theory of convolution in spaces of hoi om orphic functions). The theorems based on TVS ** theory are generally of the "foundation" type: they will often be statements of equivalence between, say, the existence - or the approx imability -of solutions to an equation Pu = v, and certain more "formal" properties of the differential operator P, for example that P be elliptic or hyperboJic, together with properties of the manifold X on which P is defined. The latter are generally geometric or topological, e. g. that X be P-convex (Definition 20. 1). Also, naturally, suitable conditions will have to be imposed upon the data, the v's, and upon the stock of possible solutions u. The effect of such theorems is to subdivide the study of an equation like Pu = v into two quite different stages. In the first stage, we shall look for the relevant equivalences, and if none is already available in the literature, we shall try to establish them. The second stage will consist of checking if the "formal" or "geometric" conditions are satisfied.

Nonlinear Differential Equations of Monotone Types in Banach Spaces

Download Nonlinear Differential Equations of Monotone Types in Banach Spaces PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1441955429
Total Pages : 283 pages
Book Rating : 4.4/5 (419 download)

DOWNLOAD NOW!


Book Synopsis Nonlinear Differential Equations of Monotone Types in Banach Spaces by : Viorel Barbu

Download or read book Nonlinear Differential Equations of Monotone Types in Banach Spaces written by Viorel Barbu and published by Springer Science & Business Media. This book was released on 2010-01-01 with total page 283 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph is concerned with the basic results on Cauchy problems associated with nonlinear monotone operators in Banach spaces with applications to partial differential equations of evolutive type. It focuses on major results in recent decades.

Partial Differential Equations

Download Partial Differential Equations PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0470054565
Total Pages : 467 pages
Book Rating : 4.4/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Partial Differential Equations by : Walter A. Strauss

Download or read book Partial Differential Equations written by Walter A. Strauss and published by John Wiley & Sons. This book was released on 2007-12-21 with total page 467 pages. Available in PDF, EPUB and Kindle. Book excerpt: Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.

Linear Functional Analysis

Download Linear Functional Analysis PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1447136551
Total Pages : 276 pages
Book Rating : 4.4/5 (471 download)

DOWNLOAD NOW!


Book Synopsis Linear Functional Analysis by : Bryan Rynne

Download or read book Linear Functional Analysis written by Bryan Rynne and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to the ideas and methods of linear func tional analysis at a level appropriate to the final year of an undergraduate course at a British university. The prerequisites for reading it are a standard undergraduate knowledge of linear algebra and real analysis (including the the ory of metric spaces). Part of the development of functional analysis can be traced to attempts to find a suitable framework in which to discuss differential and integral equa tions. Often, the appropriate setting turned out to be a vector space of real or complex-valued functions defined on some set. In general, such a vector space is infinite-dimensional. This leads to difficulties in that, although many of the elementary properties of finite-dimensional vector spaces hold in infinite dimensional vector spaces, many others do not. For example, in general infinite dimensional vector spaces there is no framework in which to make sense of an alytic concepts such as convergence and continuity. Nevertheless, on the spaces of most interest to us there is often a norm (which extends the idea of the length of a vector to a somewhat more abstract setting). Since a norm on a vector space gives rise to a metric on the space, it is now possible to do analysis in the space. As real or complex-valued functions are often called functionals, the term functional analysis came to be used for this topic. We now briefly outline the contents of the book.

Techniques of Functional Analysis for Differential and Integral Equations

Download Techniques of Functional Analysis for Differential and Integral Equations PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0128114576
Total Pages : 322 pages
Book Rating : 4.1/5 (281 download)

DOWNLOAD NOW!


Book Synopsis Techniques of Functional Analysis for Differential and Integral Equations by : Paul Sacks

Download or read book Techniques of Functional Analysis for Differential and Integral Equations written by Paul Sacks and published by Academic Press. This book was released on 2017-05-16 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Techniques of Functional Analysis for Differential and Integral Equations describes a variety of powerful and modern tools from mathematical analysis, for graduate study and further research in ordinary differential equations, integral equations and partial differential equations. Knowledge of these techniques is particularly useful as preparation for graduate courses and PhD research in differential equations and numerical analysis, and more specialized topics such as fluid dynamics and control theory. Striking a balance between mathematical depth and accessibility, proofs involving more technical aspects of measure and integration theory are avoided, but clear statements and precise alternative references are given . The work provides many examples and exercises drawn from the literature. - Provides an introduction to mathematical techniques widely used in applied mathematics and needed for advanced research in ordinary and partial differential equations, integral equations, numerical analysis, fluid dynamics and other areas - Establishes the advanced background needed for sophisticated literature review and research in differential equations and integral equations - Suitable for use as a textbook for a two semester graduate level course for M.S. and Ph.D. students in Mathematics and Applied Mathematics

Function Spaces and Partial Differential Equations

Download Function Spaces and Partial Differential Equations PDF Online Free

Author :
Publisher : OUP Oxford
ISBN 13 : 0191047821
Total Pages : 523 pages
Book Rating : 4.1/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Function Spaces and Partial Differential Equations by : Ali Taheri

Download or read book Function Spaces and Partial Differential Equations written by Ali Taheri and published by OUP Oxford. This book was released on 2015-07-30 with total page 523 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a book written primarily for graduate students and early researchers in the fields of Analysis and Partial Differential Equations (PDEs). Coverage of the material is essentially self-contained, extensive and novel with great attention to details and rigour. The strength of the book primarily lies in its clear and detailed explanations, scope and coverage, highlighting and presenting deep and profound inter-connections between different related and seemingly unrelated disciplines within classical and modern mathematics and above all the extensive collection of examples, worked-out and hinted exercises. There are well over 700 exercises of varying level leading the reader from the basics to the most advanced levels and frontiers of research. The book can be used either for independent study or for a year-long graduate level course. In fact it has its origin in a year-long graduate course taught by the author in Oxford in 2004-5 and various parts of it in other institutions later on. A good number of distinguished researchers and faculty in mathematics worldwide have started their research career from the course that formed the basis for this book.

Introduction to Partial Differential Equations

Download Introduction to Partial Differential Equations PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319489364
Total Pages : 293 pages
Book Rating : 4.3/5 (194 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Partial Differential Equations by : David Borthwick

Download or read book Introduction to Partial Differential Equations written by David Borthwick and published by Springer. This book was released on 2017-01-12 with total page 293 pages. Available in PDF, EPUB and Kindle. Book excerpt: This modern take on partial differential equations does not require knowledge beyond vector calculus and linear algebra. The author focuses on the most important classical partial differential equations, including conservation equations and their characteristics, the wave equation, the heat equation, function spaces, and Fourier series, drawing on tools from analysis only as they arise. Within each section the author creates a narrative that answers the five questions: What is the scientific problem we are trying to understand? How do we model that with PDE? What techniques can we use to analyze the PDE? How do those techniques apply to this equation? What information or insight did we obtain by developing and analyzing the PDE? The text stresses the interplay between modeling and mathematical analysis, providing a thorough source of problems and an inspiration for the development of methods.

Lecture Notes on Functional Analysis

Download Lecture Notes on Functional Analysis PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821887718
Total Pages : 265 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Lecture Notes on Functional Analysis by : Alberto Bressan

Download or read book Lecture Notes on Functional Analysis written by Alberto Bressan and published by American Mathematical Soc.. This book was released on 2013 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is addressed to graduate students in mathematics or other disciplines who wish to understand the essential concepts of functional analysis and their applications to partial differential equations. The book is intentionally concise, presenting all the fundamental concepts and results but omitting the more specialized topics. Enough of the theory of Sobolev spaces and semigroups of linear operators is included as needed to develop significant applications to elliptic, parabolic, and hyperbolic PDEs. Throughout the book, care has been taken to explain the connections between theorems in functional analysis and familiar results of finite-dimensional linear algebra. The main concepts and ideas used in the proofs are illustrated with a large number of figures. A rich collection of homework problems is included at the end of most chapters. The book is suitable as a text for a one-semester graduate course.

Sobolev Spaces

Download Sobolev Spaces PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642155642
Total Pages : 882 pages
Book Rating : 4.6/5 (421 download)

DOWNLOAD NOW!


Book Synopsis Sobolev Spaces by : Vladimir Maz'ya

Download or read book Sobolev Spaces written by Vladimir Maz'ya and published by Springer Science & Business Media. This book was released on 2011-02-11 with total page 882 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sobolev spaces play an outstanding role in modern analysis, in particular, in the theory of partial differential equations and its applications in mathematical physics. They form an indispensable tool in approximation theory, spectral theory, differential geometry etc. The theory of these spaces is of interest in itself being a beautiful domain of mathematics. The present volume includes basics on Sobolev spaces, approximation and extension theorems, embedding and compactness theorems, their relations with isoperimetric and isocapacitary inequalities, capacities with applications to spectral theory of elliptic differential operators as well as pointwise inequalities for derivatives. The selection of topics is mainly influenced by the author’s involvement in their study, a considerable part of the text is a report on his work in the field. Part of this volume first appeared in German as three booklets of Teubner-Texte zur Mathematik (1979, 1980). In the Springer volume “Sobolev Spaces”, published in English in 1985, the material was expanded and revised. The present 2nd edition is enhanced by many recent results and it includes new applications to linear and nonlinear partial differential equations. New historical comments, five new chapters and a significantly augmented list of references aim to create a broader and modern view of the area.

Mathematics for Physics

Download Mathematics for Physics PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1139480618
Total Pages : 821 pages
Book Rating : 4.1/5 (394 download)

DOWNLOAD NOW!


Book Synopsis Mathematics for Physics by : Michael Stone

Download or read book Mathematics for Physics written by Michael Stone and published by Cambridge University Press. This book was released on 2009-07-09 with total page 821 pages. Available in PDF, EPUB and Kindle. Book excerpt: An engagingly-written account of mathematical tools and ideas, this book provides a graduate-level introduction to the mathematics used in research in physics. The first half of the book focuses on the traditional mathematical methods of physics – differential and integral equations, Fourier series and the calculus of variations. The second half contains an introduction to more advanced subjects, including differential geometry, topology and complex variables. The authors' exposition avoids excess rigor whilst explaining subtle but important points often glossed over in more elementary texts. The topics are illustrated at every stage by carefully chosen examples, exercises and problems drawn from realistic physics settings. These make it useful both as a textbook in advanced courses and for self-study. Password-protected solutions to the exercises are available to instructors at www.cambridge.org/9780521854030.

Partial Differential Equations 2

Download Partial Differential Equations 2 PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540344624
Total Pages : 401 pages
Book Rating : 4.5/5 (43 download)

DOWNLOAD NOW!


Book Synopsis Partial Differential Equations 2 by : Friedrich Sauvigny

Download or read book Partial Differential Equations 2 written by Friedrich Sauvigny and published by Springer Science & Business Media. This book was released on 2006-10-11 with total page 401 pages. Available in PDF, EPUB and Kindle. Book excerpt: This encyclopedic work covers the whole area of Partial Differential Equations - of the elliptic, parabolic, and hyperbolic type - in two and several variables. Emphasis is placed on the connection of PDEs and complex variable methods. This second volume addresses Solvability of operator equations in Banach spaces; Linear operators in Hilbert spaces and spectral theory; Schauder's theory of linear elliptic differential equations; Weak solutions of differential equations; Nonlinear partial differential equations and characteristics; Nonlinear elliptic systems with differential-geometric applications. While partial differential equations are solved via integral representations in the preceding volume, this volume uses functional analytic solution methods.