Computing the Continuous Discretely

Download Computing the Continuous Discretely PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 1493929690
Total Pages : 295 pages
Book Rating : 4.4/5 (939 download)

DOWNLOAD NOW!


Book Synopsis Computing the Continuous Discretely by : Matthias Beck

Download or read book Computing the Continuous Discretely written by Matthias Beck and published by Springer. This book was released on 2015-11-14 with total page 295 pages. Available in PDF, EPUB and Kindle. Book excerpt: This richly illustrated textbook explores the amazing interaction between combinatorics, geometry, number theory, and analysis which arises in the interplay between polyhedra and lattices. Highly accessible to advanced undergraduates, as well as beginning graduate students, this second edition is perfect for a capstone course, and adds two new chapters, many new exercises, and updated open problems. For scientists, this text can be utilized as a self-contained tooling device. The topics include a friendly invitation to Ehrhart’s theory of counting lattice points in polytopes, finite Fourier analysis, the Frobenius coin-exchange problem, Dedekind sums, solid angles, Euler–Maclaurin summation for polytopes, computational geometry, magic squares, zonotopes, and more. With more than 300 exercises and open research problems, the reader is an active participant, carried through diverse but tightly woven mathematical fields that are inspired by an innocently elementary question: What are the relationships between the continuous volume of a polytope and its discrete volume? Reviews of the first edition: “You owe it to yourself to pick up a copy of Computing the Continuous Discretely to read about a number of interesting problems in geometry, number theory, and combinatorics.” — MAA Reviews “The book is written as an accessible and engaging textbook, with many examples, historical notes, pithy quotes, commentary integrating the mate rial, exercises, open problems and an extensive bibliography.” — Zentralblatt MATH “This beautiful book presents, at a level suitable for advanced undergraduates, a fairly complete introduction to the problem of counting lattice points inside a convex polyhedron.” — Mathematical Reviews “Many departments recognize the need for capstone courses in which graduating students can see the tools they have acquired come together in some satisfying way. Beck and Robins have written the perfect text for such a course.” — CHOICE

Existence of Unimodular Triangulations–Positive Results

Download Existence of Unimodular Triangulations–Positive Results PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470447169
Total Pages : 83 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Existence of Unimodular Triangulations–Positive Results by : Christian Haase

Download or read book Existence of Unimodular Triangulations–Positive Results written by Christian Haase and published by American Mathematical Soc.. This book was released on 2021-07-21 with total page 83 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unimodular triangulations of lattice polytopes arise in algebraic geometry, commutative algebra, integer programming and, of course, combinatorics. In this article, we review several classes of polytopes that do have unimodular triangulations and constructions that preserve their existence. We include, in particular, the first effective proof of the classical result by Knudsen-Mumford-Waterman stating that every lattice polytope has a dilation that admits a unimodular triangulation. Our proof yields an explicit (although doubly exponential) bound for the dilation factor.

Algebraic And Geometric Combinatorics On Lattice Polytopes - Proceedings Of The Summer Workshop On Lattice Polytopes

Download Algebraic And Geometric Combinatorics On Lattice Polytopes - Proceedings Of The Summer Workshop On Lattice Polytopes PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9811200491
Total Pages : 476 pages
Book Rating : 4.8/5 (112 download)

DOWNLOAD NOW!


Book Synopsis Algebraic And Geometric Combinatorics On Lattice Polytopes - Proceedings Of The Summer Workshop On Lattice Polytopes by : Takayuki Hibi

Download or read book Algebraic And Geometric Combinatorics On Lattice Polytopes - Proceedings Of The Summer Workshop On Lattice Polytopes written by Takayuki Hibi and published by World Scientific. This book was released on 2019-05-30 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume consists of research papers and expository survey articles presented by the invited speakers of the Summer Workshop on Lattice Polytopes. Topics include enumerative, algebraic and geometric combinatorics on lattice polytopes, topological combinatorics, commutative algebra and toric varieties.Readers will find that this volume showcases current trends on lattice polytopes and stimulates further developments of many research areas surrounding this field. With the survey articles, research papers and open problems, this volume provides its fundamental materials for graduate students to learn and researchers to find exciting activities and avenues for further exploration on lattice polytopes.

Integer Points in Polyhedra

Download Integer Points in Polyhedra PDF Online Free

Author :
Publisher : European Mathematical Society
ISBN 13 : 9783037190524
Total Pages : 204 pages
Book Rating : 4.1/5 (95 download)

DOWNLOAD NOW!


Book Synopsis Integer Points in Polyhedra by : Alexander Barvinok

Download or read book Integer Points in Polyhedra written by Alexander Barvinok and published by European Mathematical Society. This book was released on 2008 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a self-contained exposition of several core aspects of the theory of rational polyhedra with a view towards algorithmic applications to efficient counting of integer points, a problem arising in many areas of pure and applied mathematics. The approach is based on the consistent development and application of the apparatus of generating functions and the algebra of polyhedra. Topics range from classical, such as the Euler characteristic, continued fractions, Ehrhart polynomial, Minkowski Convex Body Theorem, and the Lenstra-Lenstra-Lovasz lattice reduction algorithm, to recent advances such as the Berline-Vergne local formula. The text is intended for graduate students and researchers. Prerequisites are a modest background in linear algebra and analysis as well as some general mathematical maturity. Numerous figures, exercises of varying degree of difficulty as well as references to the literature and publicly available software make the text suitable for a graduate course.

Introduction to Toric Varieties

Download Introduction to Toric Varieties PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 9780691000497
Total Pages : 174 pages
Book Rating : 4.0/5 (4 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Toric Varieties by : William Fulton

Download or read book Introduction to Toric Varieties written by William Fulton and published by Princeton University Press. This book was released on 1993 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt: Toric varieties are algebraic varieties arising from elementary geometric and combinatorial objects such as convex polytopes in Euclidean space with vertices on lattice points. Since many algebraic geometry notions such as singularities, birational maps, cycles, homology, intersection theory, and Riemann-Roch translate into simple facts about polytopes, toric varieties provide a marvelous source of examples in algebraic geometry. In the other direction, general facts from algebraic geometry have implications for such polytopes, such as to the problem of the number of lattice points they contain. In spite of the fact that toric varieties are very special in the spectrum of all algebraic varieties, they provide a remarkably useful testing ground for general theories. The aim of this mini-course is to develop the foundations of the study of toric varieties, with examples, and describe some of these relations and applications. The text concludes with Stanley's theorem characterizing the numbers of simplicies in each dimension in a convex simplicial polytope. Although some general theorems are quoted without proof, the concrete interpretations via simplicial geometry should make the text accessible to beginners in algebraic geometry.

Integer Points in Polyhedra -- Geometry, Number Theory, Algebra, Optimization

Download Integer Points in Polyhedra -- Geometry, Number Theory, Algebra, Optimization PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821834592
Total Pages : 210 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Integer Points in Polyhedra -- Geometry, Number Theory, Algebra, Optimization by : Alexander Barvinok

Download or read book Integer Points in Polyhedra -- Geometry, Number Theory, Algebra, Optimization written by Alexander Barvinok and published by American Mathematical Soc.. This book was released on 2005 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: The AMS-IMS-SIAM Summer Research Conference on Integer Points in Polyhedra took place in Snowbird (UT). This proceedings volume contains original research and survey articles stemming from that event. Topics covered include commutative algebra, optimization, discrete geometry, statistics, representation theory, and symplectic geometry. The book is suitable for researchers and graduate students interested in combinatorial aspects of the above fields.

Handbook of Discrete and Computational Geometry

Download Handbook of Discrete and Computational Geometry PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1351645919
Total Pages : 2354 pages
Book Rating : 4.3/5 (516 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Discrete and Computational Geometry by : Csaba D. Toth

Download or read book Handbook of Discrete and Computational Geometry written by Csaba D. Toth and published by CRC Press. This book was released on 2017-11-22 with total page 2354 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Handbook of Discrete and Computational Geometry is intended as a reference book fully accessible to nonspecialists as well as specialists, covering all major aspects of both fields. The book offers the most important results and methods in discrete and computational geometry to those who use them in their work, both in the academic world—as researchers in mathematics and computer science—and in the professional world—as practitioners in fields as diverse as operations research, molecular biology, and robotics. Discrete geometry has contributed significantly to the growth of discrete mathematics in recent years. This has been fueled partly by the advent of powerful computers and by the recent explosion of activity in the relatively young field of computational geometry. This synthesis between discrete and computational geometry lies at the heart of this Handbook. A growing list of application fields includes combinatorial optimization, computer-aided design, computer graphics, crystallography, data analysis, error-correcting codes, geographic information systems, motion planning, operations research, pattern recognition, robotics, solid modeling, and tomography.

Interactions with Lattice Polytopes

Download Interactions with Lattice Polytopes PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030983277
Total Pages : 368 pages
Book Rating : 4.0/5 (39 download)

DOWNLOAD NOW!


Book Synopsis Interactions with Lattice Polytopes by : Alexander M. Kasprzyk

Download or read book Interactions with Lattice Polytopes written by Alexander M. Kasprzyk and published by Springer Nature. This book was released on 2022-06-08 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book collects together original research and survey articles highlighting the fertile interdisciplinary applications of convex lattice polytopes in modern mathematics. Covering a diverse range of topics, including algebraic geometry, mirror symmetry, symplectic geometry, discrete geometry, and algebraic combinatorics, the common theme is the study of lattice polytopes. These fascinating combinatorial objects are a cornerstone of toric geometry and continue to find rich and unforeseen applications throughout mathematics. The workshop Interactions with Lattice Polytopes assembled many top researchers at the Otto-von-Guericke-Universität Magdeburg in 2017 to discuss the role of lattice polytopes in their work, and many of their presented results are collected in this book. Intended to be accessible, these articles are suitable for researchers and graduate students interested in learning about some of the wide-ranging interactions of lattice polytopes in pure mathematics.

Handbook of Convex Geometry

Download Handbook of Convex Geometry PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0080934404
Total Pages : 769 pages
Book Rating : 4.0/5 (89 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Convex Geometry by : Bozzano G Luisa

Download or read book Handbook of Convex Geometry written by Bozzano G Luisa and published by Elsevier. This book was released on 2014-06-28 with total page 769 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Convex Geometry, Volume B offers a survey of convex geometry and its many ramifications and connections with other fields of mathematics, including convexity, lattices, crystallography, and convex functions. The selection first offers information on the geometry of numbers, lattice points, and packing and covering with convex sets. Discussions focus on packing in non-Euclidean spaces, problems in the Euclidean plane, general convex bodies, computational complexity of lattice point problem, centrally symmetric convex bodies, reduction theory, and lattices and the space of lattices. The text then examines finite packing and covering and tilings, including plane tilings, monohedral tilings, bin packing, and sausage problems. The manuscript takes a look at valuations and dissections, geometric crystallography, convexity and differential geometry, and convex functions. Topics include differentiability, inequalities, uniqueness theorems for convex hypersurfaces, mixed discriminants and mixed volumes, differential geometric characterization of convexity, reduction of quadratic forms, and finite groups of symmetry operations. The selection is a dependable source of data for mathematicians and researchers interested in convex geometry.

Lattice Points

Download Lattice Points PDF Online Free

Author :
Publisher : Longman Scientific and Technical
ISBN 13 :
Total Pages : 200 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Lattice Points by : Paul Erdős

Download or read book Lattice Points written by Paul Erdős and published by Longman Scientific and Technical. This book was released on 1989 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contains solved and unsolved problems concerning lattice points, especially geometric, number theoretic, combinatorial, and analytic results, theories, and problems related to lattice points. Emphasis is on the geometry of numbers. Provides extensive comments on each problem, consisting mostly of heuristic arguments and intuitive descriptions. There are only a few proofs. Annotation copyrighted by Book News, Inc., Portland, OR

Toric Varieties

Download Toric Varieties PDF Online Free

Author :
Publisher : American Mathematical Society
ISBN 13 : 147047820X
Total Pages : 870 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Toric Varieties by : David A. Cox

Download or read book Toric Varieties written by David A. Cox and published by American Mathematical Society. This book was released on 2024-06-25 with total page 870 pages. Available in PDF, EPUB and Kindle. Book excerpt: Toric varieties form a beautiful and accessible part of modern algebraic geometry. This book covers the standard topics in toric geometry; a novel feature is that each of the first nine chapters contains an introductory section on the necessary background material in algebraic geometry. Other topics covered include quotient constructions, vanishing theorems, equivariant cohomology, GIT quotients, the secondary fan, and the minimal model program for toric varieties. The subject lends itself to rich examples reflected in the 134 illustrations included in the text. The book also explores connections with commutative algebra and polyhedral geometry, treating both polytopes and their unbounded cousins, polyhedra. There are appendices on the history of toric varieties and the computational tools available to investigate nontrivial examples in toric geometry. Readers of this book should be familiar with the material covered in basic graduate courses in algebra and topology, and to a somewhat lesser degree, complex analysis. In addition, the authors assume that the reader has had some previous experience with algebraic geometry at an advanced undergraduate level. The book will be a useful reference for graduate students and researchers who are interested in algebraic geometry, polyhedral geometry, and toric varieties.

Polytopes, Rings, and K-Theory

Download Polytopes, Rings, and K-Theory PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387763562
Total Pages : 461 pages
Book Rating : 4.3/5 (877 download)

DOWNLOAD NOW!


Book Synopsis Polytopes, Rings, and K-Theory by : Winfried Bruns

Download or read book Polytopes, Rings, and K-Theory written by Winfried Bruns and published by Springer Science & Business Media. This book was released on 2009-06-12 with total page 461 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book examines interactions of polyhedral discrete geometry and algebra. What makes this book unique is the presentation of several central results in all three areas of the exposition - from discrete geometry, to commutative algebra, and K-theory.

Integer Points in Polyhedra -- Geometry, Number Theory, Representation Theory, Algebra, Optimization, Statistics

Download Integer Points in Polyhedra -- Geometry, Number Theory, Representation Theory, Algebra, Optimization, Statistics PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821841734
Total Pages : 202 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Integer Points in Polyhedra -- Geometry, Number Theory, Representation Theory, Algebra, Optimization, Statistics by : Matthias Beck

Download or read book Integer Points in Polyhedra -- Geometry, Number Theory, Representation Theory, Algebra, Optimization, Statistics written by Matthias Beck and published by American Mathematical Soc.. This book was released on 2008 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: "The AMS-IMS-SIAM Joint Summer Research Conference "Integer Points in Polyhedra--Geometry, Number Theory, Representation Theory, Algebra, Optimization, Statistics" was held in Snowbird, Utah in June 2006. This proceedings volume contains research and survey articles originating from the conference. The volume is a cross section of recent advances connected to lattice-point questions. Similar to the talks given at the conference, topics range from commutative algebra to optimization, from discrete geometry to statistics, from mirror symmetry to geometry of numbers. The book is suitable for researchers and graduate students interested in combinatorial aspects of the above fields." -- Back cover.

Handbook of Discrete and Computational Geometry, Second Edition

Download Handbook of Discrete and Computational Geometry, Second Edition PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1420035312
Total Pages : 1557 pages
Book Rating : 4.4/5 (2 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Discrete and Computational Geometry, Second Edition by : Csaba D. Toth

Download or read book Handbook of Discrete and Computational Geometry, Second Edition written by Csaba D. Toth and published by CRC Press. This book was released on 2004-04-13 with total page 1557 pages. Available in PDF, EPUB and Kindle. Book excerpt: While high-quality books and journals in this field continue to proliferate, none has yet come close to matching the Handbook of Discrete and Computational Geometry, which in its first edition, quickly became the definitive reference work in its field. But with the rapid growth of the discipline and the many advances made over the past seven years, it's time to bring this standard-setting reference up to date. Editors Jacob E. Goodman and Joseph O'Rourke reassembled their stellar panel of contributors, added manymore, and together thoroughly revised their work to make the most important results and methods, both classic and cutting-edge, accessible in one convenient volume. Now over more then 1500 pages, the Handbook of Discrete and Computational Geometry, Second Edition once again provides unparalleled, authoritative coverage of theory, methods, and applications. Highlights of the Second Edition: Thirteen new chapters: Five on applications and others on collision detection, nearest neighbors in high-dimensional spaces, curve and surface reconstruction, embeddings of finite metric spaces, polygonal linkages, the discrepancy method, and geometric graph theory Thorough revisions of all remaining chapters Extended coverage of computational geometry software, now comprising two chapters: one on the LEDA and CGAL libraries, the other on additional software Two indices: An Index of Defined Terms and an Index of Cited Authors Greatly expanded bibliographies

A Course in Convexity

Download A Course in Convexity PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821829688
Total Pages : 378 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis A Course in Convexity by : Alexander Barvinok

Download or read book A Course in Convexity written by Alexander Barvinok and published by American Mathematical Soc.. This book was released on 2002-11-19 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: Convexity is a simple idea that manifests itself in a surprising variety of places. This fertile field has an immensely rich structure and numerous applications. Barvinok demonstrates that simplicity, intuitive appeal, and the universality of applications make teaching (and learning) convexity a gratifying experience. The book will benefit both teacher and student: It is easy to understand, entertaining to the reader, and includes many exercises that vary in degree of difficulty. Overall, the author demonstrates the power of a few simple unifying principles in a variety of pure and applied problems. The prerequisites are minimal amounts of linear algebra, analysis, and elementary topology, plus basic computational skills. Portions of the book could be used by advanced undergraduates. As a whole, it is designed for graduate students interested in mathematical methods, computer science, electrical engineering, and operations research. The book will also be of interest to research mathematicians, who will find some results that are recent, some that are new, and many known results that are discussed from a new perspective.

An Introduction to Convex Polytopes

Download An Introduction to Convex Polytopes PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461211484
Total Pages : 168 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Convex Polytopes by : Arne Brondsted

Download or read book An Introduction to Convex Polytopes written by Arne Brondsted and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this book is to introduce the reader to the fascinating world of convex polytopes. The highlights of the book are three main theorems in the combinatorial theory of convex polytopes, known as the Dehn-Sommerville Relations, the Upper Bound Theorem and the Lower Bound Theorem. All the background information on convex sets and convex polytopes which is m~eded to under stand and appreciate these three theorems is developed in detail. This background material also forms a basis for studying other aspects of polytope theory. The Dehn-Sommerville Relations are classical, whereas the proofs of the Upper Bound Theorem and the Lower Bound Theorem are of more recent date: they were found in the early 1970's by P. McMullen and D. Barnette, respectively. A famous conjecture of P. McMullen on the charac terization off-vectors of simplicial or simple polytopes dates from the same period; the book ends with a brief discussion of this conjecture and some of its relations to the Dehn-Sommerville Relations, the Upper Bound Theorem and the Lower Bound Theorem. However, the recent proofs that McMullen's conditions are both sufficient (L. J. Billera and C. W. Lee, 1980) and necessary (R. P. Stanley, 1980) go beyond the scope of the book. Prerequisites for reading the book are modest: standard linear algebra and elementary point set topology in [R1d will suffice.

Discrete Probability and Algorithms

Download Discrete Probability and Algorithms PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461208017
Total Pages : 169 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Discrete Probability and Algorithms by : David Aldous

Download or read book Discrete Probability and Algorithms written by David Aldous and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 169 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discrete probability theory and the theory of algorithms have become close partners over the last ten years, though the roots of this partnership go back much longer. The papers in this volume address the latest developments in this active field. They are from the IMA Workshops "Probability and Algorithms" and "The Finite Markov Chain Renaissance." They represent the current thinking of many of the world's leading experts in the field. Researchers and graduate students in probability, computer science, combinatorics, and optimization theory will all be interested in this collection of articles. The techniques developed and surveyed in this volume are still undergoing rapid development, and many of the articles of the collection offer an expositionally pleasant entree into a research area of growing importance.