Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Introduction To The Calculus Of Variations 3rd Edition
Download Introduction To The Calculus Of Variations 3rd Edition full books in PDF, epub, and Kindle. Read online Introduction To The Calculus Of Variations 3rd Edition ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Introduction to the Calculus of Variations by : Hans Sagan
Download or read book Introduction to the Calculus of Variations written by Hans Sagan and published by Courier Corporation. This book was released on 2012-04-26 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides a thorough understanding of calculus of variations and prepares readers for the study of modern optimal control theory. Selected variational problems and over 400 exercises. Bibliography. 1969 edition.
Book Synopsis Introduction to the Calculus of Variations by : Bernard Dacorogna
Download or read book Introduction to the Calculus of Variations written by Bernard Dacorogna and published by Imperial College Press. This book was released on 2009 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: The calculus of variations is one of the oldest subjects in mathematics, yet is very much alive and is still evolving. Besides its mathematical importance and its links to other branches of mathematics, such as geometry or differential equations, it is widely used in physics, engineering, economics and biology.This book serves both as a guide to the expansive existing literature and as an aid to the non-specialist ? mathematicians, physicists, engineers, students or researchers ? in discovering the subject's most important problems, results and techniques. Despite the aim of addressing non-specialists, mathematical rigor has not been sacrificed; most of the theorems are either fully proved or proved under more stringent conditions.In this new edition, the chapter on regularity has been significantly expanded and 27 new exercises have been added. The book, containing a total of 103 exercises with detailed solutions, is well designed for a course at both undergraduate and graduate levels.
Book Synopsis Calculus of Variations by : Hansjörg Kielhöfer
Download or read book Calculus of Variations written by Hansjörg Kielhöfer and published by Springer. This book was released on 2018-01-25 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: This clear and concise textbook provides a rigorous introduction to the calculus of variations, depending on functions of one variable and their first derivatives. It is based on a translation of a German edition of the book Variationsrechnung (Vieweg+Teubner Verlag, 2010), translated and updated by the author himself. Topics include: the Euler-Lagrange equation for one-dimensional variational problems, with and without constraints, as well as an introduction to the direct methods. The book targets students who have a solid background in calculus and linear algebra, not necessarily in functional analysis. Some advanced mathematical tools, possibly not familiar to the reader, are given along with proofs in the appendix. Numerous figures, advanced problems and proofs, examples, and exercises with solutions accompany the book, making it suitable for self-study. The book will be particularly useful for beginning graduate students from the physical, engineering, and mathematical sciences with a rigorous theoretical background.
Book Synopsis Introduction to the Calculus of Variations and Control with Modern Applications by : John A. Burns
Download or read book Introduction to the Calculus of Variations and Control with Modern Applications written by John A. Burns and published by CRC Press. This book was released on 2013-08-28 with total page 562 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to the Calculus of Variations and Control with Modern Applications provides the fundamental background required to develop rigorous necessary conditions that are the starting points for theoretical and numerical approaches to modern variational calculus and control problems. The book also presents some classical sufficient conditions a
Book Synopsis An Introduction to the Calculus of Variations by : L.A. Pars
Download or read book An Introduction to the Calculus of Variations written by L.A. Pars and published by Courier Corporation. This book was released on 2013-12-10 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: Clear, rigorous introductory treatment covers applications to geometry, dynamics, and physics. It focuses upon problems with one independent variable, connecting abstract theory with its use in concrete problems. 1962 edition.
Book Synopsis Calculus of Variations by : Charles R. MacCluer
Download or read book Calculus of Variations written by Charles R. MacCluer and published by Courier Corporation. This book was released on 2013-05-20 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: First truly up-to-date treatment offers a simple introduction to optimal control, linear-quadratic control design, and more. Broad perspective features numerous exercises, hints, outlines, and appendixes, including a practical discussion of MATLAB. 2005 edition.
Book Synopsis Calculus of Variations by : Filip Rindler
Download or read book Calculus of Variations written by Filip Rindler and published by Springer. This book was released on 2018-06-20 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides a comprehensive introduction to the classical and modern calculus of variations, serving as a useful reference to advanced undergraduate and graduate students as well as researchers in the field. Starting from ten motivational examples, the book begins with the most important aspects of the classical theory, including the Direct Method, the Euler-Lagrange equation, Lagrange multipliers, Noether’s Theorem and some regularity theory. Based on the efficient Young measure approach, the author then discusses the vectorial theory of integral functionals, including quasiconvexity, polyconvexity, and relaxation. In the second part, more recent material such as rigidity in differential inclusions, microstructure, convex integration, singularities in measures, functionals defined on functions of bounded variation (BV), and Γ-convergence for phase transitions and homogenization are explored. While predominantly designed as a textbook for lecture courses on the calculus of variations, this book can also serve as the basis for a reading seminar or as a companion for self-study. The reader is assumed to be familiar with basic vector analysis, functional analysis, Sobolev spaces, and measure theory, though most of the preliminaries are also recalled in the appendix.
Book Synopsis Applied Calculus of Variations for Engineers by : Louis Komzsik
Download or read book Applied Calculus of Variations for Engineers written by Louis Komzsik and published by CRC Press. This book was released on 2018-09-03 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of the calculus of variations is to find optimal solutions to engineering problems whose optimum may be a certain quantity, shape, or function. Applied Calculus of Variations for Engineers addresses this important mathematical area applicable to many engineering disciplines. Its unique, application-oriented approach sets it apart from the theoretical treatises of most texts, as it is aimed at enhancing the engineer’s understanding of the topic. This Second Edition text: Contains new chapters discussing analytic solutions of variational problems and Lagrange-Hamilton equations of motion in depth Provides new sections detailing the boundary integral and finite element methods and their calculation techniques Includes enlightening new examples, such as the compression of a beam, the optimal cross section of beam under bending force, the solution of Laplace’s equation, and Poisson’s equation with various methods Applied Calculus of Variations for Engineers, Second Edition extends the collection of techniques aiding the engineer in the application of the concepts of the calculus of variations.
Book Synopsis The Calculus of Variations by : Bruce van Brunt
Download or read book The Calculus of Variations written by Bruce van Brunt and published by Springer Science & Business Media. This book was released on 2006-04-18 with total page 295 pages. Available in PDF, EPUB and Kindle. Book excerpt: Suitable for advanced undergraduate and graduate students of mathematics, physics, or engineering, this introduction to the calculus of variations focuses on variational problems involving one independent variable. It also discusses more advanced topics such as the inverse problem, eigenvalue problems, and Noether’s theorem. The text includes numerous examples along with problems to help students consolidate the material.
Book Synopsis Calculus of Variations by : I. M. Gelfand
Download or read book Calculus of Variations written by I. M. Gelfand and published by Courier Corporation. This book was released on 2012-04-26 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fresh, lively text serves as a modern introduction to the subject, with applications to the mechanics of systems with a finite number of degrees of freedom. Ideal for math and physics students.
Book Synopsis Modern Methods in the Calculus of Variations by : Irene Fonseca
Download or read book Modern Methods in the Calculus of Variations written by Irene Fonseca and published by Springer Science & Business Media. This book was released on 2007-08-22 with total page 602 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first of two books on methods and techniques in the calculus of variations. Contemporary arguments are used throughout the text to streamline and present in a unified way classical results, and to provide novel contributions at the forefront of the theory. This book addresses fundamental questions related to lower semicontinuity and relaxation of functionals within the unconstrained setting, mainly in L^p spaces. It prepares the ground for the second volume where the variational treatment of functionals involving fields and their derivatives will be undertaken within the framework of Sobolev spaces. This book is self-contained. All the statements are fully justified and proved, with the exception of basic results in measure theory, which may be found in any good textbook on the subject. It also contains several exercises. Therefore,it may be used both as a graduate textbook as well as a reference text for researchers in the field. Irene Fonseca is the Mellon College of Science Professor of Mathematics and is currently the Director of the Center for Nonlinear Analysis in the Department of Mathematical Sciences at Carnegie Mellon University. Her research interests lie in the areas of continuum mechanics, calculus of variations, geometric measure theory and partial differential equations. Giovanni Leoni is also a professor in the Department of Mathematical Sciences at Carnegie Mellon University. He focuses his research on calculus of variations, partial differential equations and geometric measure theory with special emphasis on applications to problems in continuum mechanics and in materials science.
Book Synopsis Functional Analysis, Calculus of Variations and Optimal Control by : Francis Clarke
Download or read book Functional Analysis, Calculus of Variations and Optimal Control written by Francis Clarke and published by Springer Science & Business Media. This book was released on 2013-02-06 with total page 589 pages. Available in PDF, EPUB and Kindle. Book excerpt: Functional analysis owes much of its early impetus to problems that arise in the calculus of variations. In turn, the methods developed there have been applied to optimal control, an area that also requires new tools, such as nonsmooth analysis. This self-contained textbook gives a complete course on all these topics. It is written by a leading specialist who is also a noted expositor. This book provides a thorough introduction to functional analysis and includes many novel elements as well as the standard topics. A short course on nonsmooth analysis and geometry completes the first half of the book whilst the second half concerns the calculus of variations and optimal control. The author provides a comprehensive course on these subjects, from their inception through to the present. A notable feature is the inclusion of recent, unifying developments on regularity, multiplier rules, and the Pontryagin maximum principle, which appear here for the first time in a textbook. Other major themes include existence and Hamilton-Jacobi methods. The many substantial examples, and the more than three hundred exercises, treat such topics as viscosity solutions, nonsmooth Lagrangians, the logarithmic Sobolev inequality, periodic trajectories, and systems theory. They also touch lightly upon several fields of application: mechanics, economics, resources, finance, control engineering. Functional Analysis, Calculus of Variations and Optimal Control is intended to support several different courses at the first-year or second-year graduate level, on functional analysis, on the calculus of variations and optimal control, or on some combination. For this reason, it has been organized with customization in mind. The text also has considerable value as a reference. Besides its advanced results in the calculus of variations and optimal control, its polished presentation of certain other topics (for example convex analysis, measurable selections, metric regularity, and nonsmooth analysis) will be appreciated by researchers in these and related fields.
Book Synopsis The Calculus of Variations and Optimal Control by : George Leitmann
Download or read book The Calculus of Variations and Optimal Control written by George Leitmann and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 313 pages. Available in PDF, EPUB and Kindle. Book excerpt: When the Tyrian princess Dido landed on the North African shore of the Mediterranean sea she was welcomed by a local chieftain. He offered her all the land that she could enclose between the shoreline and a rope of knotted cowhide. While the legend does not tell us, we may assume that Princess Dido arrived at the correct solution by stretching the rope into the shape of a circular arc and thereby maximized the area of the land upon which she was to found Carthage. This story of the founding of Carthage is apocryphal. Nonetheless it is probably the first account of a problem of the kind that inspired an entire mathematical discipline, the calculus of variations and its extensions such as the theory of optimal control. This book is intended to present an introductory treatment of the calculus of variations in Part I and of optimal control theory in Part II. The discussion in Part I is restricted to the simplest problem of the calculus of variations. The topic is entirely classical; all of the basic theory had been developed before the turn of the century. Consequently the material comes from many sources; however, those most useful to me have been the books of Oskar Bolza and of George M. Ewing. Part II is devoted to the elementary aspects of the modern extension of the calculus of variations, the theory of optimal control of dynamical systems.
Book Synopsis Direct Methods in the Calculus of Variations by : Bernard Dacorogna
Download or read book Direct Methods in the Calculus of Variations written by Bernard Dacorogna and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years there has been a considerable renewal of interest in the clas sical problems of the calculus of variations, both from the point of view of mathematics and of applications. Some of the most powerful tools for proving existence of minima for such problems are known as direct methods. They are often the only available ones, particularly for vectorial problems. It is the aim of this book to present them. These methods were introduced by Tonelli, following earlier work of Hilbert and Lebesgue. Although there are excellent books on calculus of variations and on direct methods, there are recent important developments which cannot be found in these books; in particular, those dealing with vector valued functions and relaxation of non convex problems. These two last ones are important in appli cations to nonlinear elasticity, optimal design . . . . In these fields the variational methods are particularly effective. Part of the mathematical developments and of the renewal of interest in these methods finds its motivations in nonlinear elasticity. Moreover, one of the recent important contributions to nonlinear analysis has been the study of the behaviour of nonlinear functionals un der various types of convergence, particularly the weak convergence. Two well studied theories have now been developed, namely f-convergence and compen sated compactness. They both include as a particular case the direct methods of the calculus of variations, but they are also, both, inspired and have as main examples these direct methods.
Book Synopsis Introduction To The Calculus of Variations And Its Applications, Second Edition by : Frederic Wan
Download or read book Introduction To The Calculus of Variations And Its Applications, Second Edition written by Frederic Wan and published by CRC Press. This book was released on 1995-01-01 with total page 660 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive text provides all information necessary for an introductory course on the calculus of variations and optimal control theory. Following a thorough discussion of the basic problem, including sufficient conditions for optimality, the theory and techniques are extended to problems with a free end point, a free boundary, auxiliary and inequality constraints, leading to a study of optimal control theory.
Book Synopsis Calculus of Variations and Optimal Control Theory by : Daniel Liberzon
Download or read book Calculus of Variations and Optimal Control Theory written by Daniel Liberzon and published by Princeton University Press. This book was released on 2012 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook offers a concise yet rigorous introduction to calculus of variations and optimal control theory, and is a self-contained resource for graduate students in engineering, applied mathematics, and related subjects. Designed specifically for a one-semester course, the book begins with calculus of variations, preparing the ground for optimal control. It then gives a complete proof of the maximum principle and covers key topics such as the Hamilton-Jacobi-Bellman theory of dynamic programming and linear-quadratic optimal control. Calculus of Variations and Optimal Control Theory also traces the historical development of the subject and features numerous exercises, notes and references at the end of each chapter, and suggestions for further study. Offers a concise yet rigorous introduction Requires limited background in control theory or advanced mathematics Provides a complete proof of the maximum principle Uses consistent notation in the exposition of classical and modern topics Traces the historical development of the subject Solutions manual (available only to teachers) Leading universities that have adopted this book include: University of Illinois at Urbana-Champaign ECE 553: Optimum Control Systems Georgia Institute of Technology ECE 6553: Optimal Control and Optimization University of Pennsylvania ESE 680: Optimal Control Theory University of Notre Dame EE 60565: Optimal Control
Book Synopsis Classical Mechanics with Calculus of Variations and Optimal Control by : Mark Levi
Download or read book Classical Mechanics with Calculus of Variations and Optimal Control written by Mark Levi and published by American Mathematical Soc.. This book was released on 2014-03-07 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an intuitively motivated presentation of many topics in classical mechanics and related areas of control theory and calculus of variations. All topics throughout the book are treated with zero tolerance for unrevealing definitions and for proofs which leave the reader in the dark. Some areas of particular interest are: an extremely short derivation of the ellipticity of planetary orbits; a statement and an explanation of the "tennis racket paradox"; a heuristic explanation (and a rigorous treatment) of the gyroscopic effect; a revealing equivalence between the dynamics of a particle and statics of a spring; a short geometrical explanation of Pontryagin's Maximum Principle, and more. In the last chapter, aimed at more advanced readers, the Hamiltonian and the momentum are compared to forces in a certain static problem. This gives a palpable physical meaning to some seemingly abstract concepts and theorems. With minimal prerequisites consisting of basic calculus and basic undergraduate physics, this book is suitable for courses from an undergraduate to a beginning graduate level, and for a mixed audience of mathematics, physics and engineering students. Much of the enjoyment of the subject lies in solving almost 200 problems in this book.