Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Introduction To Second Order Partial Differential Equations An Classical And Variational Solutions
Download Introduction To Second Order Partial Differential Equations An Classical And Variational Solutions full books in PDF, epub, and Kindle. Read online Introduction To Second Order Partial Differential Equations An Classical And Variational Solutions ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis An Introduction to Second Order Partial Differential Equations by : D. Cioranescu
Download or read book An Introduction to Second Order Partial Differential Equations written by D. Cioranescu and published by World Scientific Publishing Company. This book was released on 2017 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book extensively introduces classical and variational partial differential equations (PDEs) to graduate and post-graduate students in Mathematics. The topics, even the most delicate, are presented in a detailed way. The book consists of two parts which focus on second order linear PDEs. Part I gives an overview of classical PDEs, that is, equations which admit strong solutions, verifying the equations pointwise. Classical solutions of the Laplace, heat, and wave equations are provided. Part II deals with variational PDEs, where weak (variational) solutions are considered. They are defined by variational formulations of the equations, based on Sobolev spaces. A comprehensive and detailed presentation of these spaces is given. Examples of variational elliptic, parabolic, and hyperbolic problems with different boundary conditions are discussed.
Book Synopsis An Introduction to Second Order Partial Differential Equations by : Doïna Cioranescu
Download or read book An Introduction to Second Order Partial Differential Equations written by Doïna Cioranescu and published by . This book was released on 2017 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Introduction To Second Order Partial Differential Equations, An: Classical And Variational Solutions by : Doina Cioranescu
Download or read book Introduction To Second Order Partial Differential Equations, An: Classical And Variational Solutions written by Doina Cioranescu and published by World Scientific Publishing Company. This book was released on 2017-11-27 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book extensively introduces classical and variational partial differential equations (PDEs) to graduate and post-graduate students in Mathematics. The topics, even the most delicate, are presented in a detailed way. The book consists of two parts which focus on second order linear PDEs. Part I gives an overview of classical PDEs, that is, equations which admit strong solutions, verifying the equations pointwise. Classical solutions of the Laplace, heat, and wave equations are provided. Part II deals with variational PDEs, where weak (variational) solutions are considered. They are defined by variational formulations of the equations, based on Sobolev spaces. A comprehensive and detailed presentation of these spaces is given. Examples of variational elliptic, parabolic, and hyperbolic problems with different boundary conditions are discussed.
Book Synopsis Partial Differential Equations by : Walter A. Strauss
Download or read book Partial Differential Equations written by Walter A. Strauss and published by John Wiley & Sons. This book was released on 2007-12-21 with total page 467 pages. Available in PDF, EPUB and Kindle. Book excerpt: Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.
Book Synopsis Partial Differential Equations in Action by : Sandro Salsa
Download or read book Partial Differential Equations in Action written by Sandro Salsa and published by Springer. This book was released on 2015-05-30 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook presents problems and exercises at various levels of difficulty in the following areas: Classical Methods in PDEs (diffusion, waves, transport, potential equations); Basic Functional Analysis and Distribution Theory; Variational Formulation of Elliptic Problems; and Weak Formulation for Parabolic Problems and for the Wave Equation. Thanks to the broad variety of exercises with complete solutions, it can be used in all basic and advanced PDE courses.
Book Synopsis Variational Techniques for Elliptic Partial Differential Equations by : Francisco J. Sayas
Download or read book Variational Techniques for Elliptic Partial Differential Equations written by Francisco J. Sayas and published by CRC Press. This book was released on 2019-01-16 with total page 492 pages. Available in PDF, EPUB and Kindle. Book excerpt: Variational Techniques for Elliptic Partial Differential Equations, intended for graduate students studying applied math, analysis, and/or numerical analysis, provides the necessary tools to understand the structure and solvability of elliptic partial differential equations. Beginning with the necessary definitions and theorems from distribution theory, the book gradually builds the functional analytic framework for studying elliptic PDE using variational formulations. Rather than introducing all of the prerequisites in the first chapters, it is the introduction of new problems which motivates the development of the associated analytical tools. In this way the student who is encountering this material for the first time will be aware of exactly what theory is needed, and for which problems. Features A detailed and rigorous development of the theory of Sobolev spaces on Lipschitz domains, including the trace operator and the normal component of vector fields An integration of functional analysis concepts involving Hilbert spaces and the problems which can be solved with these concepts, rather than separating the two Introduction to the analytical tools needed for physical problems of interest like time-harmonic waves, Stokes and Darcy flow, surface differential equations, Maxwell cavity problems, etc. A variety of problems which serve to reinforce and expand upon the material in each chapter, including applications in fluid and solid mechanics
Book Synopsis Partial Differential Equations by : Jürgen Jost
Download or read book Partial Differential Equations written by Jürgen Jost and published by Springer Science & Business Media. This book was released on 2012-11-13 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers an ideal graduate-level introduction to the theory of partial differential equations. The first part of the book describes the basic mathematical problems and structures associated with elliptic, parabolic, and hyperbolic partial differential equations, and explores the connections between these fundamental types. Aspects of Brownian motion or pattern formation processes are also presented. The second part focuses on existence schemes and develops estimates for solutions of elliptic equations, such as Sobolev space theory, weak and strong solutions, Schauder estimates, and Moser iteration. In particular, the reader will learn the basic techniques underlying current research in elliptic partial differential equations. This revised and expanded third edition is enhanced with many additional examples that will help motivate the reader. New features include a reorganized and extended chapter on hyperbolic equations, as well as a new chapter on the relations between different types of partial differential equations, including first-order hyperbolic systems, Langevin and Fokker-Planck equations, viscosity solutions for elliptic PDEs, and much more. Also, the new edition contains additional material on systems of elliptic partial differential equations, and it explains in more detail how the Harnack inequality can be used for the regularity of solutions.
Book Synopsis A Short Introduction to Partial Differential Equations by : Arian Novruzi
Download or read book A Short Introduction to Partial Differential Equations written by Arian Novruzi and published by Springer Nature. This book was released on 2023-12-30 with total page 225 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a short introduction to partial differential equations (PDEs). It is primarily addressed to graduate students and researchers, who are new to PDEs. The book offers a user-friendly approach to the analysis of PDEs, by combining elementary techniques and fundamental modern methods. The author focuses the analysis on four prototypes of PDEs, and presents two approaches for each of them. The first approach consists of the method of analytical and classical solutions, and the second approach consists of the method of weak (variational) solutions. In connection with the approach of weak solutions, the book also provides an introduction to distributions, Fourier transform and Sobolev spaces. The book ends with an appendix chapter, which complements the previous chapters with proofs, examples and remarks. This book can be used for an intense one-semester, or normal two-semester, PDE course. The reader is expected to have knowledge of linear algebra and of differential equations, a good background in real and complex calculus and a modest background in analysis and topology. The book has many examples, which help to better understand the concepts, highlight the key ideas and emphasize the sharpness of results, as well as a section of problems at the end of each chapter.
Book Synopsis Lectures on Elliptic Partial Differential Equations by : Luigi Ambrosio
Download or read book Lectures on Elliptic Partial Differential Equations written by Luigi Ambrosio and published by Springer. This book was released on 2019-01-10 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book originates from the Elliptic PDE course given by the first author at the Scuola Normale Superiore in recent years. It covers the most classical aspects of the theory of Elliptic Partial Differential Equations and Calculus of Variations, including also more recent developments on partial regularity for systems and the theory of viscosity solutions.
Book Synopsis Functional Analysis, Sobolev Spaces and Partial Differential Equations by : Haim Brezis
Download or read book Functional Analysis, Sobolev Spaces and Partial Differential Equations written by Haim Brezis and published by Springer Science & Business Media. This book was released on 2010-11-02 with total page 600 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is a completely revised, updated, and expanded English edition of the important Analyse fonctionnelle (1983). In addition, it contains a wealth of problems and exercises (with solutions) to guide the reader. Uniquely, this book presents in a coherent, concise and unified way the main results from functional analysis together with the main results from the theory of partial differential equations (PDEs). Although there are many books on functional analysis and many on PDEs, this is the first to cover both of these closely connected topics. Since the French book was first published, it has been translated into Spanish, Italian, Japanese, Korean, Romanian, Greek and Chinese. The English edition makes a welcome addition to this list.
Book Synopsis Introduction to Partial Differential Equations by : David Borthwick
Download or read book Introduction to Partial Differential Equations written by David Borthwick and published by Springer. This book was released on 2017-01-12 with total page 293 pages. Available in PDF, EPUB and Kindle. Book excerpt: This modern take on partial differential equations does not require knowledge beyond vector calculus and linear algebra. The author focuses on the most important classical partial differential equations, including conservation equations and their characteristics, the wave equation, the heat equation, function spaces, and Fourier series, drawing on tools from analysis only as they arise. Within each section the author creates a narrative that answers the five questions: What is the scientific problem we are trying to understand? How do we model that with PDE? What techniques can we use to analyze the PDE? How do those techniques apply to this equation? What information or insight did we obtain by developing and analyzing the PDE? The text stresses the interplay between modeling and mathematical analysis, providing a thorough source of problems and an inspiration for the development of methods.
Book Synopsis Partial Differential Equations in Action by : Sandro Salsa
Download or read book Partial Differential Equations in Action written by Sandro Salsa and published by Springer. This book was released on 2015-04-24 with total page 714 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is intended as an advanced undergraduate or first-year graduate course for students from various disciplines, including applied mathematics, physics and engineering. It has evolved from courses offered on partial differential equations (PDEs) over the last several years at the Politecnico di Milano. These courses had a twofold purpose: on the one hand, to teach students to appreciate the interplay between theory and modeling in problems arising in the applied sciences, and on the other to provide them with a solid theoretical background in numerical methods, such as finite elements. Accordingly, this textbook is divided into two parts. The first part, chapters 2 to 5, is more elementary in nature and focuses on developing and studying basic problems from the macro-areas of diffusion, propagation and transport, waves and vibrations. In turn the second part, chapters 6 to 11, concentrates on the development of Hilbert spaces methods for the variational formulation and the analysis of (mainly) linear boundary and initial-boundary value problems.
Book Synopsis Partial Differential Equations and Boundary-Value Problems with Applications by : Mark A. Pinsky
Download or read book Partial Differential Equations and Boundary-Value Problems with Applications written by Mark A. Pinsky and published by American Mathematical Soc.. This book was released on 2011 with total page 545 pages. Available in PDF, EPUB and Kindle. Book excerpt: Building on the basic techniques of separation of variables and Fourier series, the book presents the solution of boundary-value problems for basic partial differential equations: the heat equation, wave equation, and Laplace equation, considered in various standard coordinate systems--rectangular, cylindrical, and spherical. Each of the equations is derived in the three-dimensional context; the solutions are organized according to the geometry of the coordinate system, which makes the mathematics especially transparent. Bessel and Legendre functions are studied and used whenever appropriate throughout the text. The notions of steady-state solution of closely related stationary solutions are developed for the heat equation; applications to the study of heat flow in the earth are presented. The problem of the vibrating string is studied in detail both in the Fourier transform setting and from the viewpoint of the explicit representation (d'Alembert formula). Additional chapters include the numerical analysis of solutions and the method of Green's functions for solutions of partial differential equations. The exposition also includes asymptotic methods (Laplace transform and stationary phase). With more than 200 working examples and 700 exercises (more than 450 with answers), the book is suitable for an undergraduate course in partial differential equations.
Book Synopsis Partial Differential Equations and Solitary Waves Theory by : Abdul-Majid Wazwaz
Download or read book Partial Differential Equations and Solitary Waves Theory written by Abdul-Majid Wazwaz and published by Springer Science & Business Media. This book was released on 2010-05-28 with total page 700 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Partial Differential Equations and Solitary Waves Theory" is a self-contained book divided into two parts: Part I is a coherent survey bringing together newly developed methods for solving PDEs. While some traditional techniques are presented, this part does not require thorough understanding of abstract theories or compact concepts. Well-selected worked examples and exercises shall guide the reader through the text. Part II provides an extensive exposition of the solitary waves theory. This part handles nonlinear evolution equations by methods such as Hirota’s bilinear method or the tanh-coth method. A self-contained treatment is presented to discuss complete integrability of a wide class of nonlinear equations. This part presents in an accessible manner a systematic presentation of solitons, multi-soliton solutions, kinks, peakons, cuspons, and compactons. While the whole book can be used as a text for advanced undergraduate and graduate students in applied mathematics, physics and engineering, Part II will be most useful for graduate students and researchers in mathematics, engineering, and other related fields. Dr. Abdul-Majid Wazwaz is a Professor of Mathematics at Saint Xavier University, Chicago, Illinois, USA.
Book Synopsis Partial Differential Equations III by : M. A. Shubin
Download or read book Partial Differential Equations III written by M. A. Shubin and published by Springer Verlag. This book was released on 1991 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: Two general questions regarding partial differential equations are explored in detail in this volume of the Encyclopaedia. The first is the Cauchy problem, and its attendant question of well-posedness (or correctness). The authors address this question in the context of PDEs with constant coefficients and more general convolution equations in the first two chapters. The third chapter extends a number of these results to equations with variable coefficients. The second topic is the qualitative theory of second order linear PDEs, in particular, elliptic and parabolic equations. Thus, the second part of the book is primarily a look at the behavior of solutions of these equations. There are versions of the maximum principle, the Phragmen-Lindel]f theorem and Harnack's inequality discussed for both elliptic and parabolic equations. The book is intended for readers who are already familiar with the basic material in the theory of partial differential equations.
Book Synopsis An Introduction to Partial Differential Equations by : Michael Renardy
Download or read book An Introduction to Partial Differential Equations written by Michael Renardy and published by Springer Science & Business Media. This book was released on 2006-04-18 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: Partial differential equations are fundamental to the modeling of natural phenomena. The desire to understand the solutions of these equations has always had a prominent place in the efforts of mathematicians and has inspired such diverse fields as complex function theory, functional analysis, and algebraic topology. This book, meant for a beginning graduate audience, provides a thorough introduction to partial differential equations.
Download or read book Official Gazette written by Philippines and published by . This book was released on 2011 with total page 898 pages. Available in PDF, EPUB and Kindle. Book excerpt: