Introduction to Lie Algebras and Representation Theory

Download Introduction to Lie Algebras and Representation Theory PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461263980
Total Pages : 189 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Lie Algebras and Representation Theory by : J.E. Humphreys

Download or read book Introduction to Lie Algebras and Representation Theory written by J.E. Humphreys and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 189 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is designed to introduce the reader to the theory of semisimple Lie algebras over an algebraically closed field of characteristic 0, with emphasis on representations. A good knowledge of linear algebra (including eigenvalues, bilinear forms, euclidean spaces, and tensor products of vector spaces) is presupposed, as well as some acquaintance with the methods of abstract algebra. The first four chapters might well be read by a bright undergraduate; however, the remaining three chapters are admittedly a little more demanding. Besides being useful in many parts of mathematics and physics, the theory of semisimple Lie algebras is inherently attractive, combining as it does a certain amount of depth and a satisfying degree of completeness in its basic results. Since Jacobson's book appeared a decade ago, improvements have been made even in the classical parts of the theory. I have tried to incor porate some of them here and to provide easier access to the subject for non-specialists. For the specialist, the following features should be noted: (I) The Jordan-Chevalley decomposition of linear transformations is emphasized, with "toral" subalgebras replacing the more traditional Cartan subalgebras in the semisimple case. (2) The conjugacy theorem for Cartan subalgebras is proved (following D. J. Winter and G. D. Mostow) by elementary Lie algebra methods, avoiding the use of algebraic geometry.

Introduction to Lie Algebras and Representation Theory

Download Introduction to Lie Algebras and Representation Theory PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9780387900537
Total Pages : 198 pages
Book Rating : 4.9/5 (5 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Lie Algebras and Representation Theory by : JAMES HUMPHREYS

Download or read book Introduction to Lie Algebras and Representation Theory written by JAMES HUMPHREYS and published by Springer Science & Business Media. This book was released on 1994-10-27 with total page 198 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is designed to introduce the reader to the theory of semisimple Lie algebras over an algebraically closed field of characteristic 0, with emphasis on representations. A good knowledge of linear algebra (including eigenvalues, bilinear forms, euclidean spaces, and tensor products of vector spaces) is presupposed, as well as some acquaintance with the methods of abstract algebra. The first four chapters might well be read by a bright undergraduate; however, the remaining three chapters are admittedly a little more demanding. Besides being useful in many parts of mathematics and physics, the theory of semisimple Lie algebras is inherently attractive, combining as it does a certain amount of depth and a satisfying degree of completeness in its basic results. Since Jacobson's book appeared a decade ago, improvements have been made even in the classical parts of the theory. I have tried to incor porate some of them here and to provide easier access to the subject for non-specialists. For the specialist, the following features should be noted: (I) The Jordan-Chevalley decomposition of linear transformations is emphasized, with "toral" subalgebras replacing the more traditional Cartan subalgebras in the semisimple case. (2) The conjugacy theorem for Cartan subalgebras is proved (following D. J. Winter and G. D. Mostow) by elementary Lie algebra methods, avoiding the use of algebraic geometry.

李代数和表示论导论

Download 李代数和表示论导论 PDF Online Free

Author :
Publisher :
ISBN 13 : 9787506272841
Total Pages : 172 pages
Book Rating : 4.2/5 (728 download)

DOWNLOAD NOW!


Book Synopsis 李代数和表示论导论 by : James E. Humphreys

Download or read book 李代数和表示论导论 written by James E. Humphreys and published by . This book was released on 2006 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: 本书内容包括:Jordan-Chevalley分解、Cartan子代数的共轭定理、同构定理的证明、根系统的公理化处理、Weyl特征子公式等。

Lie Groups, Lie Algebras, and Representations

Download Lie Groups, Lie Algebras, and Representations PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319134671
Total Pages : 452 pages
Book Rating : 4.3/5 (191 download)

DOWNLOAD NOW!


Book Synopsis Lie Groups, Lie Algebras, and Representations by : Brian Hall

Download or read book Lie Groups, Lie Algebras, and Representations written by Brian Hall and published by Springer. This book was released on 2015-05-11 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook treats Lie groups, Lie algebras and their representations in an elementary but fully rigorous fashion requiring minimal prerequisites. In particular, the theory of matrix Lie groups and their Lie algebras is developed using only linear algebra, and more motivation and intuition for proofs is provided than in most classic texts on the subject. In addition to its accessible treatment of the basic theory of Lie groups and Lie algebras, the book is also noteworthy for including: a treatment of the Baker–Campbell–Hausdorff formula and its use in place of the Frobenius theorem to establish deeper results about the relationship between Lie groups and Lie algebras motivation for the machinery of roots, weights and the Weyl group via a concrete and detailed exposition of the representation theory of sl(3;C) an unconventional definition of semisimplicity that allows for a rapid development of the structure theory of semisimple Lie algebras a self-contained construction of the representations of compact groups, independent of Lie-algebraic arguments The second edition of Lie Groups, Lie Algebras, and Representations contains many substantial improvements and additions, among them: an entirely new part devoted to the structure and representation theory of compact Lie groups; a complete derivation of the main properties of root systems; the construction of finite-dimensional representations of semisimple Lie algebras has been elaborated; a treatment of universal enveloping algebras, including a proof of the Poincaré–Birkhoff–Witt theorem and the existence of Verma modules; complete proofs of the Weyl character formula, the Weyl dimension formula and the Kostant multiplicity formula. Review of the first edition: This is an excellent book. It deserves to, and undoubtedly will, become the standard text for early graduate courses in Lie group theory ... an important addition to the textbook literature ... it is highly recommended. — The Mathematical Gazette

Introduction to Lie Algebras

Download Introduction to Lie Algebras PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1846284902
Total Pages : 254 pages
Book Rating : 4.8/5 (462 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Lie Algebras by : K. Erdmann

Download or read book Introduction to Lie Algebras written by K. Erdmann and published by Springer Science & Business Media. This book was released on 2006-09-28 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lie groups and Lie algebras have become essential to many parts of mathematics and theoretical physics, with Lie algebras a central object of interest in their own right. This book provides an elementary introduction to Lie algebras based on a lecture course given to fourth-year undergraduates. The only prerequisite is some linear algebra and an appendix summarizes the main facts that are needed. The treatment is kept as simple as possible with no attempt at full generality. Numerous worked examples and exercises are provided to test understanding, along with more demanding problems, several of which have solutions. Introduction to Lie Algebras covers the core material required for almost all other work in Lie theory and provides a self-study guide suitable for undergraduate students in their final year and graduate students and researchers in mathematics and theoretical physics.

Lie Groups, Lie Algebras, and Representations

Download Lie Groups, Lie Algebras, and Representations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9780387401225
Total Pages : 376 pages
Book Rating : 4.4/5 (12 download)

DOWNLOAD NOW!


Book Synopsis Lie Groups, Lie Algebras, and Representations by : Brian C. Hall

Download or read book Lie Groups, Lie Algebras, and Representations written by Brian C. Hall and published by Springer Science & Business Media. This book was released on 2003-08-07 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to Lie groups, Lie algebras, and repre sentation theory, aimed at graduate students in mathematics and physics. Although there are already several excellent books that cover many of the same topics, this book has two distinctive features that I hope will make it a useful addition to the literature. First, it treats Lie groups (not just Lie alge bras) in a way that minimizes the amount of manifold theory needed. Thus, I neither assume a prior course on differentiable manifolds nor provide a con densed such course in the beginning chapters. Second, this book provides a gentle introduction to the machinery of semi simple groups and Lie algebras by treating the representation theory of SU(2) and SU(3) in detail before going to the general case. This allows the reader to see roots, weights, and the Weyl group "in action" in simple cases before confronting the general theory. The standard books on Lie theory begin immediately with the general case: a smooth manifold that is also a group. The Lie algebra is then defined as the space of left-invariant vector fields and the exponential mapping is defined in terms of the flow along such vector fields. This approach is undoubtedly the right one in the long run, but it is rather abstract for a reader encountering such things for the first time.

An Introduction to Lie Groups and Lie Algebras

Download An Introduction to Lie Groups and Lie Algebras PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 0521889693
Total Pages : 237 pages
Book Rating : 4.5/5 (218 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Lie Groups and Lie Algebras by : Alexander A. Kirillov

Download or read book An Introduction to Lie Groups and Lie Algebras written by Alexander A. Kirillov and published by Cambridge University Press. This book was released on 2008-07-31 with total page 237 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to semisimple Lie algebras. It is concise and informal, with numerous exercises and examples.

Introduction to Representation Theory

Download Introduction to Representation Theory PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821853511
Total Pages : 240 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Representation Theory by : Pavel I. Etingof

Download or read book Introduction to Representation Theory written by Pavel I. Etingof and published by American Mathematical Soc.. This book was released on 2011 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: Very roughly speaking, representation theory studies symmetry in linear spaces. It is a beautiful mathematical subject which has many applications, ranging from number theory and combinatorics to geometry, probability theory, quantum mechanics, and quantum field theory. The goal of this book is to give a ``holistic'' introduction to representation theory, presenting it as a unified subject which studies representations of associative algebras and treating the representation theories of groups, Lie algebras, and quivers as special cases. Using this approach, the book covers a number of standard topics in the representation theories of these structures. Theoretical material in the book is supplemented by many problems and exercises which touch upon a lot of additional topics; the more difficult exercises are provided with hints. The book is designed as a textbook for advanced undergraduate and beginning graduate students. It should be accessible to students with a strong background in linear algebra and a basic knowledge of abstract algebra.

Representation Theory

Download Representation Theory PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9780387974958
Total Pages : 616 pages
Book Rating : 4.9/5 (749 download)

DOWNLOAD NOW!


Book Synopsis Representation Theory by : William Fulton

Download or read book Representation Theory written by William Fulton and published by Springer Science & Business Media. This book was released on 1991 with total page 616 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introducing finite-dimensional representations of Lie groups and Lie algebras, this example-oriented book works from representation theory of finite groups, through Lie groups and Lie algrbras to the finite dimensional representations of the classical groups.

Semi-Simple Lie Algebras and Their Representations

Download Semi-Simple Lie Algebras and Their Representations PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 0486150313
Total Pages : 180 pages
Book Rating : 4.4/5 (861 download)

DOWNLOAD NOW!


Book Synopsis Semi-Simple Lie Algebras and Their Representations by : Robert N. Cahn

Download or read book Semi-Simple Lie Algebras and Their Representations written by Robert N. Cahn and published by Courier Corporation. This book was released on 2014-06-10 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: Designed to acquaint students of particle physiME already familiar with SU(2) and SU(3) with techniques applicable to all simple Lie algebras, this text is especially suited to the study of grand unification theories. Author Robert N. Cahn, who is affiliated with the Lawrence Berkeley National Laboratory in Berkeley, California, has provided a new preface for this edition. Subjects include the killing form, the structure of simple Lie algebras and their representations, simple roots and the Cartan matrix, the classical Lie algebras, and the exceptional Lie algebras. Additional topiME include Casimir operators and Freudenthal's formula, the Weyl group, Weyl's dimension formula, reducing product representations, subalgebras, and branching rules. 1984 edition.

Representations of Lie Algebras

Download Representations of Lie Algebras PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107653614
Total Pages : 167 pages
Book Rating : 4.1/5 (76 download)

DOWNLOAD NOW!


Book Synopsis Representations of Lie Algebras by : Anthony Henderson

Download or read book Representations of Lie Algebras written by Anthony Henderson and published by Cambridge University Press. This book was released on 2012-08-16 with total page 167 pages. Available in PDF, EPUB and Kindle. Book excerpt: A fresh undergraduate-accessible approach to Lie algebras and their representations.

Lie Groups, Lie Algebras, and Their Representations

Download Lie Groups, Lie Algebras, and Their Representations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461211263
Total Pages : 444 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Lie Groups, Lie Algebras, and Their Representations by : V.S. Varadarajan

Download or read book Lie Groups, Lie Algebras, and Their Representations written by V.S. Varadarajan and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book has grown out of a set of lecture notes I had prepared for a course on Lie groups in 1966. When I lectured again on the subject in 1972, I revised the notes substantially. It is the revised version that is now appearing in book form. The theory of Lie groups plays a fundamental role in many areas of mathematics. There are a number of books on the subject currently available -most notably those of Chevalley, Jacobson, and Bourbaki-which present various aspects of the theory in great depth. However, 1 feei there is a need for a single book in English which develops both the algebraic and analytic aspects of the theory and which goes into the representation theory of semi simple Lie groups and Lie algebras in detail. This book is an attempt to fiii this need. It is my hope that this book will introduce the aspiring graduate student as well as the nonspecialist mathematician to the fundamental themes of the subject. I have made no attempt to discuss infinite-dimensional representations. This is a very active field, and a proper treatment of it would require another volume (if not more) of this size. However, the reader who wants to take up this theory will find that this book prepares him reasonably well for that task.

Algebras and Representation Theory

Download Algebras and Representation Theory PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319919989
Total Pages : 304 pages
Book Rating : 4.3/5 (199 download)

DOWNLOAD NOW!


Book Synopsis Algebras and Representation Theory by : Karin Erdmann

Download or read book Algebras and Representation Theory written by Karin Erdmann and published by Springer. This book was released on 2018-09-07 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: This carefully written textbook provides an accessible introduction to the representation theory of algebras, including representations of quivers. The book starts with basic topics on algebras and modules, covering fundamental results such as the Jordan-Hölder theorem on composition series, the Artin-Wedderburn theorem on the structure of semisimple algebras and the Krull-Schmidt theorem on indecomposable modules. The authors then go on to study representations of quivers in detail, leading to a complete proof of Gabriel's celebrated theorem characterizing the representation type of quivers in terms of Dynkin diagrams. Requiring only introductory courses on linear algebra and groups, rings and fields, this textbook is aimed at undergraduate students. With numerous examples illustrating abstract concepts, and including more than 200 exercises (with solutions to about a third of them), the book provides an example-driven introduction suitable for self-study and use alongside lecture courses.

Naive Lie Theory

Download Naive Lie Theory PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 038778215X
Total Pages : 230 pages
Book Rating : 4.3/5 (877 download)

DOWNLOAD NOW!


Book Synopsis Naive Lie Theory by : John Stillwell

Download or read book Naive Lie Theory written by John Stillwell and published by Springer Science & Business Media. This book was released on 2008-12-15 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this new textbook, acclaimed author John Stillwell presents a lucid introduction to Lie theory suitable for junior and senior level undergraduates. In order to achieve this, he focuses on the so-called "classical groups'' that capture the symmetries of real, complex, and quaternion spaces. These symmetry groups may be represented by matrices, which allows them to be studied by elementary methods from calculus and linear algebra. This naive approach to Lie theory is originally due to von Neumann, and it is now possible to streamline it by using standard results of undergraduate mathematics. To compensate for the limitations of the naive approach, end of chapter discussions introduce important results beyond those proved in the book, as part of an informal sketch of Lie theory and its history. John Stillwell is Professor of Mathematics at the University of San Francisco. He is the author of several highly regarded books published by Springer, including The Four Pillars of Geometry (2005), Elements of Number Theory (2003), Mathematics and Its History (Second Edition, 2002), Numbers and Geometry (1998) and Elements of Algebra (1994).

The Lie Algebras su(N)

Download The Lie Algebras su(N) PDF Online Free

Author :
Publisher : Birkhäuser
ISBN 13 : 3034880979
Total Pages : 121 pages
Book Rating : 4.0/5 (348 download)

DOWNLOAD NOW!


Book Synopsis The Lie Algebras su(N) by : Walter Pfeifer

Download or read book The Lie Algebras su(N) written by Walter Pfeifer and published by Birkhäuser. This book was released on 2012-12-06 with total page 121 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lie algebras are efficient tools for analyzing the properties of physical systems. Concrete applications comprise the formulation of symmetries of Hamiltonian systems, the description of atomic, molecular and nuclear spectra, the physics of elementary particles and many others. This work gives an introduction to the properties and the structure of the Lie algebras su(n). The book features an elementary (matrix) access to su(N)-algebras, and gives a first insight into Lie algebras. Student readers should be enabled to begin studies on physical su(N)-applications, instructors will profit from the detailed calculations and examples.

Lie Groups

Download Lie Groups PDF Online Free

Author :
Publisher : Oxford University Press, USA
ISBN 13 : 9780199202515
Total Pages : 290 pages
Book Rating : 4.2/5 (25 download)

DOWNLOAD NOW!


Book Synopsis Lie Groups by : Wulf Rossmann

Download or read book Lie Groups written by Wulf Rossmann and published by Oxford University Press, USA. This book was released on 2006 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to the theory of Lie groups and their representations at the advanced undergraduate or beginning graduate level. It covers the essentials of the subject starting from basic undergraduate mathematics. The correspondence between linear Lie groups and Lie algebras is developed in its local and global aspects. The classical groups are analyzed in detail, first with elementary matrix methods, then with the help of the structural tools typical of the theory of semisimple groups, such as Cartan subgroups, root, weights and reflections. The fundamental groups of the classical groups are worked out as an application of these methods. Manifolds are introduced when needed, in connection with homogeneous spaces, and the elements of differential and integral calculus on manifolds are presented, with special emphasis on integration on groups and homogeneous spaces. Representation theory starts from first principles, such as Schur's lemma and its consequences, and proceeds from there to the Peter-Weyl theorem, Weyl's character formula, and the Borel-Weil theorem, all in the context of linear groups.

Lie Groups, Lie Algebras, and Some of Their Applications

Download Lie Groups, Lie Algebras, and Some of Their Applications PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 0486131564
Total Pages : 610 pages
Book Rating : 4.4/5 (861 download)

DOWNLOAD NOW!


Book Synopsis Lie Groups, Lie Algebras, and Some of Their Applications by : Robert Gilmore

Download or read book Lie Groups, Lie Algebras, and Some of Their Applications written by Robert Gilmore and published by Courier Corporation. This book was released on 2012-05-23 with total page 610 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text introduces upper-level undergraduates to Lie group theory and physical applications. It further illustrates Lie group theory's role in several fields of physics. 1974 edition. Includes 75 figures and 17 tables, exercises and problems.