Influence of Atmospheric Boundary Layer on Turbulence in Wind Turbine Wake

Download Influence of Atmospheric Boundary Layer on Turbulence in Wind Turbine Wake PDF Online Free

Author :
Publisher :
ISBN 13 : 9781321194593
Total Pages : 126 pages
Book Rating : 4.1/5 (945 download)

DOWNLOAD NOW!


Book Synopsis Influence of Atmospheric Boundary Layer on Turbulence in Wind Turbine Wake by : Mithu Chandra Debnath

Download or read book Influence of Atmospheric Boundary Layer on Turbulence in Wind Turbine Wake written by Mithu Chandra Debnath and published by . This book was released on 2014 with total page 126 pages. Available in PDF, EPUB and Kindle. Book excerpt: Full-scale wind turbines (WT) operate in the atmospheric boundary layer. The atmospheric boundary layer structure significantly influences the turbulence generated in the wake of the WT. As Atmospheric boundary layer structure is dictated by the stratification of the atmosphere, hence stratifications effects are critical in accurate representation of the turbine wake physics. Due to the dependency of several factors, such as turbulence scales, buoyancy flux, momentum flux, the atmospheric boundary layer turbulence capturing is really challenging. Large Eddy Simulation (LES) has been used as a tool to understand the effects of atmospheric stability on turbine wake turbulence. The differences between the stable and unstable atmosphere on wake of 5-MW turbine has been explored. Differences in tip and root vortex interactions, wake expansion and recovery have been analyzed. The study has revealed for stable ABL low level jets play an important role in wake dynamics and increasing stability delays the wake recovery. Tip vortex is unconditionally unstable in all stability conditions due to mutual inductance mode of stability leading to vortex merging. The study is one of the first studies that accounts for realistic atmospheric boundary turbulence on wake development.

Wind Energy - Impact of Turbulence

Download Wind Energy - Impact of Turbulence PDF Online Free

Author :
Publisher : Springer Science & Business
ISBN 13 : 364254696X
Total Pages : 207 pages
Book Rating : 4.6/5 (425 download)

DOWNLOAD NOW!


Book Synopsis Wind Energy - Impact of Turbulence by : Michael Hölling

Download or read book Wind Energy - Impact of Turbulence written by Michael Hölling and published by Springer Science & Business. This book was released on 2014-05-15 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the results of the seminar “Wind Energy and the Impact of Turbulence on the Conversion Process” which was supported from three societies, namely the EUROMech, EAWE and ERCOFATC and took place in Oldenburg, Germany in spring 2012. The seminar was one of the first scientific meetings devoted to the common topic of wind energy and basic turbulence. The established community of researchers working on the challenging puzzle of turbulence for decades met the quite young community of researchers, who face the upcoming challenges in the fast growing field of wind energy applications. From the fluid mechanical point of view, wind turbines are large machines operating in the fully turbulent atmospheric boundary layer. In particular they are facing small-scale turbulent inflow conditions. It is one of the central puzzles in basic turbulence research to achieve a fundamental understanding of the peculiarities of small-scale turbulence. This book helps to better understand the resulting aerodynamics around the wind turbine’s blades and the forces transmitted into the machinery in this context of puzzling inflow conditions. This is a big challenge due to the multi-scale properties of the incoming wind field ranging from local flow conditions on the profile up to the interaction of wake flows in wind farms.

Handbook of Wind Energy Aerodynamics

Download Handbook of Wind Energy Aerodynamics PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030313077
Total Pages : 1495 pages
Book Rating : 4.0/5 (33 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Wind Energy Aerodynamics by : Bernhard Stoevesandt

Download or read book Handbook of Wind Energy Aerodynamics written by Bernhard Stoevesandt and published by Springer Nature. This book was released on 2022-08-04 with total page 1495 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook provides both a comprehensive overview and deep insights on the state-of-the-art methods used in wind turbine aerodynamics, as well as their advantages and limits. The focus of this work is specifically on wind turbines, where the aerodynamics are different from that of other fields due to the turbulent wind fields they face and the resultant differences in structural requirements. It gives a complete picture of research in the field, taking into account the different approaches which are applied. This book would be useful to professionals, academics, researchers and students working in the field.

Wind Energy Meteorology

Download Wind Energy Meteorology PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319728598
Total Pages : 276 pages
Book Rating : 4.3/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Wind Energy Meteorology by : Stefan Emeis

Download or read book Wind Energy Meteorology written by Stefan Emeis and published by Springer. This book was released on 2018-03-30 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers an introduction to the meteorological boundary conditions for power generation from wind – both onshore and offshore, and provides meteorological information for the planning and running of this important renewable energy source. It includes the derivation of wind laws and wind-profile descriptions, especially those above the logarithmic surface layer, and discusses winds over complex terrains and nocturnal low-level jets. This updated and expanded second edition features new chapters devoted to the efficiency of large wind parks and their wakes and to offshore wind energy.

Characterization of Wake Turbulence in a Wind Turbine Array Submerged in Atmospheric Boundary Layer Flow

Download Characterization of Wake Turbulence in a Wind Turbine Array Submerged in Atmospheric Boundary Layer Flow PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (927 download)

DOWNLOAD NOW!


Book Synopsis Characterization of Wake Turbulence in a Wind Turbine Array Submerged in Atmospheric Boundary Layer Flow by : Pankaj Jha

Download or read book Characterization of Wake Turbulence in a Wind Turbine Array Submerged in Atmospheric Boundary Layer Flow written by Pankaj Jha and published by . This book was released on 2015 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Wind energy is becoming one of the most significant sources of renewable energy. With its growing use, and social and political awareness, efforts are being made to harness it in the most efficient manner. However, a number of challenges preclude efficient and optimum operation of wind farms. Wind resource forecasting over a long operation window of a wind farm, development of wind farms over a complex terrain on-shore, and air/wave interaction off-shore all pose difficulties in materializing the goal of the efficient harnessing of wind energy. These difficulties are further amplified when wind turbine wakes interact directly with turbines located downstream and in adjacent rows in a turbulent atmospheric boundary layer (ABL). In the present study, an ABL solver is used to simulate different atmospheric stability states over a diurnal cycle. The effect of the turbines is modeled by using actuator methods, in particular the state-of-the-art actuator line method (ALM) and an improved ALM are used for the simulation of the turbine arrays. The two ALM approaches are used either with uniform inflow or are coupled with the ABL solver. In the latter case, a precursor simulation is first obtained and data saved at the inflow planes for the duration the turbines are anticipated to be simulated. The coupled ABL-ALM solver is then used to simulate the turbine arrays operating in atmospheric turbulence.A detailed accuracy assessment of the state-of-the-art ALM is performed by applying it to different rotors. A discrepancy regarding over-prediction of tip loads and an artificial tip correction is identified. A new proposed ALM* is developed and validated for the NREL Phase VI rotor. This is also applied to the NREL 5-MW turbine, and guidelines to obtain consistent results with ALM* are developed.Both the ALM approaches are then applied to study a turbine-turbine interaction problem consisting of two NREL 5-MW turbines. The simulations are performed for two ABL stability states. The effect of ABL stability as well the ALM approaches on the blade loads, turbulence statistics, unsteadiness, wake profile etc., is quantified. It is found that ALM and ALM* yield a noticeable difference in most of the parameters quantified. The ALM* also senses small-scale blade motions better. However, the ABL state dominates the wake recovery pattern. The ALM* is then applied to a mini wind farm comprising five NREL 5-MW turbines in two rows and in a staggered configuration. A detailed wake recovery study is performed using a unique wake-plane analysis technique. An actuator curve embedding (ACE) method is developed to model a general-shaped lifting surface. This method is validated for the NREL Phase VI rotor and applied to the NREL 5-MW turbine. This method has the potential for application to aero-elasticity problems of utility-scale wind turbines.

Wind Energy

Download Wind Energy PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540338667
Total Pages : 340 pages
Book Rating : 4.5/5 (43 download)

DOWNLOAD NOW!


Book Synopsis Wind Energy by : Joachim Peinke

Download or read book Wind Energy written by Joachim Peinke and published by Springer Science & Business Media. This book was released on 2007-02-13 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is comprised of the proceedings of the Euromech Colloquium 464b "Wind Energy". It comprises reports on basic research, as well as research related to the practical exploitation and application of wind energy. The book describes the atmospheric turbulent wind condition on different time scales, and the interaction of wind turbines with both wind and water flows. These influence the design, operation and maintenance of offshore wind turbines.

Simulation of the Atmospheric Boundary Layer for Wind Energy Applications

Download Simulation of the Atmospheric Boundary Layer for Wind Energy Applications PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 124 pages
Book Rating : 4.:/5 (957 download)

DOWNLOAD NOW!


Book Synopsis Simulation of the Atmospheric Boundary Layer for Wind Energy Applications by : Nikola Marjanovic

Download or read book Simulation of the Atmospheric Boundary Layer for Wind Energy Applications written by Nikola Marjanovic and published by . This book was released on 2015 with total page 124 pages. Available in PDF, EPUB and Kindle. Book excerpt: Energy production from wind is an increasingly important component of overall global power generation, and will likely continue to gain an even greater share of electricity production as world governments attempt to mitigate climate change and wind energy production costs decrease. Wind energy generation depends on wind speed, which is greatly influenced by local and synoptic environmental forcings. Synoptic forcing, such as a cold frontal passage, exists on a large spatial scale while local forcing manifests itself on a much smaller scale and could result from topographic effects or land-surface heat fluxes. Synoptic forcing, if strong enough, may suppress the effects of generally weaker local forcing. At the even smaller scale of a wind farm, upstream turbines generate wakes that decrease the wind speed and increase the atmospheric turbulence at the downwind turbines, thereby reducing power production and increasing fatigue loading that may damage turbine components, respectively. Simulation of atmospheric processes that span a considerable range of spatial and temporal scales is essential to improve wind energy forecasting, wind turbine siting, turbine maintenance scheduling, and wind turbine design. Mesoscale atmospheric models predict atmospheric conditions using observed data, for a wide range of meteorological applications across scales from thousands of kilometers to hundreds of meters. Mesoscale models include parameterizations for the major atmospheric physical processes that modulate wind speed and turbulence dynamics, such as cloud evolution and surface-atmosphere interactions. The Weather Research and Forecasting (WRF) model is used in this dissertation to investigate the effects of model parameters on wind energy forecasting. WRF is used for case study simulations at two West Coast North American wind farms, one with simple and one with complex terrain, during both synoptically and locally-driven weather events. The model's performance with different grid nesting configurations, turbulence closures, and grid resolutions is evaluated by comparison to observation data. Improvement to simulation results from the use of more computationally expensive high resolution simulations is only found for the complex terrain simulation during the locally-driven event. Physical parameters, such as soil moisture, have a large effect on locally-forced events, and prognostic turbulence kinetic energy (TKE) schemes are found to perform better than non-local eddy viscosity turbulence closure schemes. Mesoscale models, however, do not resolve turbulence directly, which is important at finer grid resolutions capable of resolving wind turbine components and their interactions with atmospheric turbulence. Large-eddy simulation (LES) is a numerical approach that resolves the largest scales of turbulence directly by separating large-scale, energetically important eddies from smaller scales with the application of a spatial filter. LES allows higher fidelity representation of the wind speed and turbulence intensity at the scale of a wind turbine which parameterizations have difficulty representing. Use of high-resolution LES enables the implementation of more sophisticated wind turbine parameterizations to create a robust model for wind energy applications using grid spacing small enough to resolve individual elements of a turbine such as its rotor blades or rotation area. Generalized actuator disk (GAD) and line (GAL) parameterizations are integrated into WRF to complement its real-world weather modeling capabilities and better represent wind turbine airflow interactions, including wake effects. The GAD parameterization represents the wind turbine as a two-dimensional disk resulting from the rotation of the turbine blades. Forces on the atmosphere are computed along each blade and distributed over rotating, annular rings intersecting the disk. While typical LES resolution (10-20 m) is normally sufficient to resolve the GAD, the GAL parameterization requires significantly higher resolution (1-3 m) as it does not distribute the forces from the blades over annular elements, but applies them along lines representing individual blades. In this dissertation, the GAL is implemented into WRF and evaluated against the GAD parameterization from two field campaigns that measured the inflow and near-wake regions of a single turbine. The data-sets are chosen to allow validation under the weakly convective and weakly stable conditions characterizing most turbine operations. The parameterizations are evaluated with respect to their ability to represent wake wind speed, variance, and vorticity by comparing fine-resolution GAD and GAL simulations along with coarse-resolution GAD simulations. Coarse-resolution GAD simulations produce aggregated wake characteristics similar to both GAD and GAL simulations (saving on computational cost), while the GAL parameterization enables resolution of near wake physics (such as vorticity shedding and wake expansion) for high fidelity applications. For the first time, to our knowledge, this dissertation combines the capabilities of a mesoscale weather prediction model, LES, and high-resolution wind turbine parameterizations into one model capable of simulating a real array of wind turbines at a wind farm. WRF is used due to its sophisticated environmental physics models, frequent use in the atmospheric modeling community, and grid nesting with LES capabilities. Grid nesting is feeding lateral boundary condition data from a coarse resolution simulation to a finer resolution simulation contained within the coarse resolution simulation's domain. WRF allows the development of a grid nesting strategy from synoptic-scale to microscale LES relevant for wind farm simulations; this is done by building on the results from the investigation of model parameters for wind energy forecasting and the implementation of the GAD and GAL wind turbine parameterizations. The nesting strategy is coupled with a GAD parameterization to model the effects of wind turbine wakes on downstream turbines at a utility-scale Oklahoma wind farm. Simulation results are compared to dual-Doppler measurements that provide three-dimensional fields of horizontal wind speed and direction. The nesting strategy is able to produce realistic turbine wake effects, while differences with the measurements can mostly be attributed to the quality of the available weather input data.

Turbulence in the Atmosphere

Download Turbulence in the Atmosphere PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1139485520
Total Pages : 407 pages
Book Rating : 4.1/5 (394 download)

DOWNLOAD NOW!


Book Synopsis Turbulence in the Atmosphere by : John C. Wyngaard

Download or read book Turbulence in the Atmosphere written by John C. Wyngaard and published by Cambridge University Press. This book was released on 2010-01-28 with total page 407 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on his over forty years of research and teaching, John C. Wyngaard's textbook is an excellent up-to-date introduction to turbulence in the atmosphere and in engineering flows for advanced students, and a reference work for researchers in the atmospheric sciences. Part I introduces the concepts and equations of turbulence. It includes a rigorous introduction to the principal types of numerical modeling of turbulent flows. Part II describes turbulence in the atmospheric boundary layer. Part III covers the foundations of the statistical representation of turbulence and includes illustrative examples of stochastic problems that can be solved analytically. The book treats atmospheric and engineering turbulence in a unified way, gives clear explanation of the fundamental concepts of modeling turbulence, and has an up-to-date treatment of turbulence in the atmospheric boundary layer. Student exercises are included at the ends of chapters, and worked solutions are available online for use by course instructors.

Atmospheric and wake turbulence impacts on wind turbine fatigue loading

Download Atmospheric and wake turbulence impacts on wind turbine fatigue loading PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 13 pages
Book Rating : 4.:/5 (776 download)

DOWNLOAD NOW!


Book Synopsis Atmospheric and wake turbulence impacts on wind turbine fatigue loading by :

Download or read book Atmospheric and wake turbulence impacts on wind turbine fatigue loading written by and published by . This book was released on 2011 with total page 13 pages. Available in PDF, EPUB and Kindle. Book excerpt:

AIJ Recommendations for Loads on Buildings

Download AIJ Recommendations for Loads on Buildings PDF Online Free

Author :
Publisher :
ISBN 13 : 9784818904590
Total Pages : 133 pages
Book Rating : 4.9/5 (45 download)

DOWNLOAD NOW!


Book Synopsis AIJ Recommendations for Loads on Buildings by : Architectural institute of Japan (AIJ)

Download or read book AIJ Recommendations for Loads on Buildings written by Architectural institute of Japan (AIJ) and published by . This book was released on 1996 with total page 133 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Lectures in Mathematical Models of Turbulence

Download Lectures in Mathematical Models of Turbulence PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 188 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Lectures in Mathematical Models of Turbulence by : Brian Edward Launder

Download or read book Lectures in Mathematical Models of Turbulence written by Brian Edward Launder and published by . This book was released on 1979 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Effects of Daytime Atmospheric Boundary Layer Turbulence on the Generation of Nonsteady Wind Turbine Loadings and Predictive Accuracy of Lower Order Models

Download Effects of Daytime Atmospheric Boundary Layer Turbulence on the Generation of Nonsteady Wind Turbine Loadings and Predictive Accuracy of Lower Order Models PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (1 download)

DOWNLOAD NOW!


Book Synopsis Effects of Daytime Atmospheric Boundary Layer Turbulence on the Generation of Nonsteady Wind Turbine Loadings and Predictive Accuracy of Lower Order Models by : Adam Lavely

Download or read book Effects of Daytime Atmospheric Boundary Layer Turbulence on the Generation of Nonsteady Wind Turbine Loadings and Predictive Accuracy of Lower Order Models written by Adam Lavely and published by . This book was released on 2017 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern utility-scale wind turbines operate in the the lower atmospheric boundary layer (ABL), which is characterized by large gradients in mean velocity and temperature and the existence of strong coherent turbulence eddies that reflect the interaction between strong mean shear and vertical buoyancy driven by solar heating. The spatio-temporal velocity variations drive nonsteady loadings on wind turbines that contribute to premature wind turbine component fatigue failure, decreasing the levelized cost of (wind) energy (LCOE). The aims of the current comprehensive research program center on the quantification of the characteristics of the nonsteady loads resulting from the interactions between the coherent energy contain gin atmospheric turbulence eddies within the lower ABL as the eddies advect through the rotor plane and the rotating wind turbine blade encounter the internal turbulence structure of the atmospheric eddies.We focus on the daytime atmospheric boundary layer, where buoyancy due to surface heating interacts with shear to create coherent turbulence structures. Pseudo-spectral large eddy simulation (LES) is used to generate an equilibrium atmospheric boundary layer over flat terrain with uniform surface roughness characteristic of the Midwest on a typical sunny windy afternoon when the ABL can be approximated as quasi-steady. The energy-containing eddies are found to create advective time-responses of order 30-90 seconds with lateral spatial scales of order the wind turbine rotor diameter. Different wind turbine simulation methods of a representative utility scale turbine were applied using the atmospheric turbulence as inflow.We apply three different fidelity wind turbine simulation methods to quantify the extent to which lower order models are able to accurately predict the nonsteady loading due to atmospheric turbulence eddies advecting through the rotor plane and interacting with the wind turbine. The methods vary both the coupling to the atmospheric boundary layer and the way in which the blade geometry is resolved and sectional blade forces are calculated. The highest fidelity simulation resolves the blade geometry to capture unsteady boundary layer response and separation dynamics within a simulation of the atmospheric boundary layer coupling the effect of the turbine to the atmospheric inflow. The lower order models both use empirical look-up tables to predict the time changes in blade sectional forces as a function of time changes in local velocity vector. The actuator line method (ALM) is two-way coupled and feeds these blade forces back into a simulation of the atmospheric boundary layer. The blade element momentum theory (BEMT) is one-way coupled and models the effect of the turbine on the incoming velocity field. The coupling method and method of blade resolution are both found to have an effect on the ability to accurately predict sectional blade load response to nonsteady atmospheric turbulence. The BEMT cannot accurately predict the timing of the response changes as these are modulated by the wind turbine within the ABL simulations. The lower order models have increased blade sectional load range and temporal gradients due to their inability to accurately capture the temporal response of the blade geometry to inflow changes. Taking advantage of horizontal homogeneity to collect statistics, we investigate the time period required to create well converged statistics in the equilibrium atmospheric boundary layer and find whereas the 10-minute industry standard for `averages' retains variability of order 10%, the 10-minute average is an optimal choice. We compare the industry standard 10-minute averaging period. The residual variability within the 10-minute period to the National Renewable Energy Laboratory (NREL) Gearbox Reliability Collaborative (GRC) field test database to find that whereas the 10-minute window still contains large variability, it is, in some sense, optimal because averaging times much longer would be required to significantly reduce variability. Turbulence fluctuations in streamwise velocity are found to be the primary driver of temporal variations in local angles of attack and sectional blade loads. Based on this new understanding, we develop analyses to show that whereas rotor torque and thrust correlate well with upstream horizontal velocity averaged over the rotor disk, out-of-plane bending moment magnitude correlates with the asymmetry in the horizontal fluctuating velocity over the rotor disk. Consequentially, off-design motions of the drivetrain and gearbox shown with the GRC field test data are well predicted using an asymmetry index designed to capture the response of a three-bladed turbine to asymmetry in the rotor plane. The predictors for torque, thrust and out-of-plane bending moment are shown to correlate well to upstream rotor planes indicating that they may be applied to advanced feed-forward control methods such as forward-facing LIDAR used to detect velocity changes in front of a wind turbine. This has the potential to increase wind turbine reliability by using controls to reduce potentially detrimental load responses to incoming atmospheric turbulence and decrease the LCOE.

Aerodynamics of Wind Turbines, 2nd edition

Download Aerodynamics of Wind Turbines, 2nd edition PDF Online Free

Author :
Publisher : Routledge
ISBN 13 : 1136572260
Total Pages : 192 pages
Book Rating : 4.1/5 (365 download)

DOWNLOAD NOW!


Book Synopsis Aerodynamics of Wind Turbines, 2nd edition by : Martin O. L. Hansen

Download or read book Aerodynamics of Wind Turbines, 2nd edition written by Martin O. L. Hansen and published by Routledge. This book was released on 2013-05-13 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its second edition, it has been entirely updated and substantially extended to reflect advances in technology, research into rotor aerodynamics and the structural response of the wind turbine structure. Topics covered include increasing mass flow through the turbine, performance at low and high wind speeds, assessment of the extreme conditions under which the turbine will perform and the theory for calculating the lifetime of the turbine. The classical Blade Element Momentum method is also covered, as are eigenmodes and the dynamic behaviour of a turbine. The new material includes a description of the effects of the dynamics and how this can be modelled in an ?aeroelastic code?, which is widely used in the design and verification of modern wind turbines. Further, the description of how to calculate the vibration of the whole construction, as well as the time varying loads, has been substantially updated.

Aerodynamics of Wind Turbines

Download Aerodynamics of Wind Turbines PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119405610
Total Pages : 334 pages
Book Rating : 4.1/5 (194 download)

DOWNLOAD NOW!


Book Synopsis Aerodynamics of Wind Turbines by : Sven Schmitz

Download or read book Aerodynamics of Wind Turbines written by Sven Schmitz and published by John Wiley & Sons. This book was released on 2020-01-28 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: A review of the aerodynamics, design and analysis, and optimization of wind turbines, combined with the author’s unique software Aerodynamics of Wind Turbines is a comprehensive introduction to the aerodynamics, scaled design and analysis, and optimization of horizontal-axis wind turbines. The author –a noted expert on the topic – reviews the fundamentals and basic physics of wind turbines operating in the atmospheric boundary layer. He then explores more complex models that help in the aerodynamic analysis and design of turbine models. The text contains unique chapters on blade element momentum theory, airfoil aerodynamics, rotational augmentation, vortex-wake methods, actuator-line modeling, and designing aerodynamically scaled turbines for model-scale experiments. The author clearly demonstrates how effective analysis and design principles can be used in a wide variety of applications and operating conditions. The book integrates the easy-to-use, hands-on XTurb design and analysis software that is available on a companion website for facilitating individual analyses and future studies. This component enhances the learning experience and helps with a deeper and more complete understanding of the subject matter. This important book: Covers aerodynamics, design and analysis and optimization of wind turbines Offers the author’s XTurb design and analysis software that is available on a companion website for individual analyses and future studies Includes unique chapters on blade element momentum theory, airfoil aerodynamics, rotational augmentation, vortex-wake methods, actuator-line modeling, and designing aerodynamically scaled turbines for model-scale experiments Demonstrates how design principles can be applied to a variety of applications and operating conditions Written for senior undergraduate and graduate students in wind energy as well as practicing engineers and scientists, Aerodynamics of Wind Turbines is an authoritative text that offers a guide to the fundamental principles, design and analysis of wind turbines.

Atmospheric Boundary Layer Flows

Download Atmospheric Boundary Layer Flows PDF Online Free

Author :
Publisher : Oxford University Press
ISBN 13 : 0195362772
Total Pages : 304 pages
Book Rating : 4.1/5 (953 download)

DOWNLOAD NOW!


Book Synopsis Atmospheric Boundary Layer Flows by : J. C. Kaimal

Download or read book Atmospheric Boundary Layer Flows written by J. C. Kaimal and published by Oxford University Press. This book was released on 1994-01-06 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: Boundary layer meteorology is the study of the physical processes that take place in the layer of air that is most influenced by the earth's underlying surface. This text/reference gives an uncomplicated view of the structure of the boundary layer, the instruments available for measuring its mean and turbulent properties, how best to make the measurements, and ways to process and analyze the data. The main applications of the book are in atmospheric modelling, wind engineering, air pollution, and agricultural meteorology. The authors have pioneered research on atmospheric turbulence and flow, and are noted for their contributions to the study of the boundary layer. This important work will interest atmospheric scientists, meteorologists, and students and faculty in these fields.

Characterizing the Influence of Turbulence Intensity on Energy Production at the Vineyard Wind 1 Farm

Download Characterizing the Influence of Turbulence Intensity on Energy Production at the Vineyard Wind 1 Farm PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 0 pages
Book Rating : 4.:/5 (137 download)

DOWNLOAD NOW!


Book Synopsis Characterizing the Influence of Turbulence Intensity on Energy Production at the Vineyard Wind 1 Farm by : Emily Pearl Condon

Download or read book Characterizing the Influence of Turbulence Intensity on Energy Production at the Vineyard Wind 1 Farm written by Emily Pearl Condon and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Turbulence in the atmospheric boundary layer mitigates wake losses between turbines and is critical to power generation by wind farms. As offshore wind energy development increases in the United States, it is necessary to understand the impact turbulence intensity uncertainty has on predicting the annual energy production (AEP) of a wind farm. In numerical models used to calculate farm power, turbulence intensity is treated as a constant input, though it has variability in the physical atmosphere. Wind conditions, such as turbulence intensity, can be modeled with numerical weather prediction (NWP), or measured with in situ instruments that may not be available offshore in the exact location of interest. For the Vineyard Wind 1 offshore farm off the coast of Massachusetts, this uncertainty between data sources led to an overprediction of 4.4% by the NWP data compared to that of the in situ data. We found that assuming a median turbulence intensity, instead of the full turbulence intensity distribution, resulted in an AEP prediction difference of less than a third of a percent. While the quantitative results presented in this thesis are site-specific to the Vineyard Wind 1 farm, the results suggest that wind condition uncertainty has a significant impact on AEP uncertainty. The results motivate further in situ measurement campaigns to assess the wind conditions that offshore wind farms will encounter.

Remote Sensing of Atmospheric Conditions for Wind Energy Applications

Download Remote Sensing of Atmospheric Conditions for Wind Energy Applications PDF Online Free

Author :
Publisher : MDPI
ISBN 13 : 3038979422
Total Pages : 290 pages
Book Rating : 4.0/5 (389 download)

DOWNLOAD NOW!


Book Synopsis Remote Sensing of Atmospheric Conditions for Wind Energy Applications by : Charlotte Bay Hasager

Download or read book Remote Sensing of Atmospheric Conditions for Wind Energy Applications written by Charlotte Bay Hasager and published by MDPI. This book was released on 2019-05-24 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Special Issue “Atmospheric Conditions for Wind Energy Applications” hosts papers on aspects of remote sensing for atmospheric conditions for wind energy applications. Wind lidar technology is presented from a theoretical view on the coherent focused Doppler lidar principles. Furthermore, wind lidar for applied use for wind turbine control, wind farm wake, and gust characterizations is presented, as well as methods to reduce uncertainty when using lidar in complex terrain. Wind lidar observations are used to validate numerical model results. Wind Doppler lidar mounted on aircraft used for observing winds in hurricane conditions and Doppler radar on the ground used for very short-term wind forecasting are presented. For the offshore environment, floating lidar data processing is presented as well as an experiment with wind-profiling lidar on a ferry for model validation. Assessments of wind resources in the coastal zone using wind-profiling lidar and global wind maps using satellite data are presented.