Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Hyperbolic Structures
Download Hyperbolic Structures full books in PDF, epub, and Kindle. Read online Hyperbolic Structures ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Hyperbolic Structures by : Matthias Beckh
Download or read book Hyperbolic Structures written by Matthias Beckh and published by John Wiley & Sons. This book was released on 2015-02-23 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hyperbolic structures analyses the interactions of form with the structural behaviour of hyperbolic lattice towers, and the effects of the various influencing factors were determined with the help of parametric studies and load capacity analyses. This evaluation of Shukhov’s historical calculations and the reconstruction of the design and development process of his water towers shows why the Russian engineer is considered not only a pathfinder for lightweight structures but also a pioneer of parametrised design processes.
Book Synopsis Fine Structures of Hyperbolic Diffeomorphisms by : Alberto Adrego Pinto
Download or read book Fine Structures of Hyperbolic Diffeomorphisms written by Alberto Adrego Pinto and published by Springer Science & Business Media. This book was released on 2008-09-30 with total page 359 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of hyperbolic systems is one of the core themes of modern dynamical systems. This book plays an important role in filling a gap in the present literature on hyperbolic dynamics and is highly recommended for all PhD students interested in this field.
Book Synopsis Foundations of Hyperbolic Manifolds by : John Ratcliffe
Download or read book Foundations of Hyperbolic Manifolds written by John Ratcliffe and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 761 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an exposition of the theoretical foundations of hyperbolic manifolds. It is intended to be used both as a textbook and as a reference. Particular emphasis has been placed on readability and completeness of ar gument. The treatment of the material is for the most part elementary and self-contained. The reader is assumed to have a basic knowledge of algebra and topology at the first-year graduate level of an American university. The book is divided into three parts. The first part, consisting of Chap ters 1-7, is concerned with hyperbolic geometry and basic properties of discrete groups of isometries of hyperbolic space. The main results are the existence theorem for discrete reflection groups, the Bieberbach theorems, and Selberg's lemma. The second part, consisting of Chapters 8-12, is de voted to the theory of hyperbolic manifolds. The main results are Mostow's rigidity theorem and the determination of the structure of geometrically finite hyperbolic manifolds. The third part, consisting of Chapter 13, in tegrates the first two parts in a development of the theory of hyperbolic orbifolds. The main results are the construction of the universal orbifold covering space and Poincare's fundamental polyhedron theorem.
Book Synopsis Algorithmic and Geometric Topics Around Free Groups and Automorphisms by : Javier Aramayona
Download or read book Algorithmic and Geometric Topics Around Free Groups and Automorphisms written by Javier Aramayona and published by Birkhäuser. This book was released on 2017-11-29 with total page 159 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents the lecture notes from the authors’ three summer courses offered during the program “Automorphisms of Free Groups: Geometry, Topology, and Dynamics,” held at the Centre de Recerca Matemàtica (CRM) in Bellaterra, Spain. The first two chapters present the basic tools needed, from formal language theory (regular and context-free languages, automata, rewriting systems, transducers, etc) and emphasize their connections to group theory, mostly relating to free and virtually-free groups. The material covered is sufficient to present full proofs of many of the existing interesting characterizations of virtually-free groups. In turn, the last chapter comprehensively describes Bonahon’s construction of Thurston’s compactification of Teichmüller space in terms of geodesic currents on surfaces. It also includes several intriguing extensions of the notion of geodesic current to various other, more general settings.
Book Synopsis Handbook of Teichmüller Theory by : Athanase Papadopoulos
Download or read book Handbook of Teichmüller Theory written by Athanase Papadopoulos and published by European Mathematical Society. This book was released on 2007 with total page 812 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Teichmuller space of a surface was introduced by O. Teichmuller in the 1930s. It is a basic tool in the study of Riemann's moduli spaces and the mapping class groups. These objects are fundamental in several fields of mathematics, including algebraic geometry, number theory, topology, geometry, and dynamics. The original setting of Teichmuller theory is complex analysis. The work of Thurston in the 1970s brought techniques of hyperbolic geometry to the study of Teichmuller space and its asymptotic geometry. Teichmuller spaces are also studied from the point of view of the representation theory of the fundamental group of the surface in a Lie group $G$, most notably $G=\mathrm{PSL}(2,\mathbb{R})$ and $G=\mathrm{PSL}(2,\mathbb{C})$. In the 1980s, there evolved an essentially combinatorial treatment of the Teichmuller and moduli spaces involving techniques and ideas from high-energy physics, namely from string theory. The current research interests include the quantization of Teichmuller space, the Weil-Petersson symplectic and Poisson geometry of this space as well as gauge-theoretic extensions of these structures. The quantization theories can lead to new invariants of hyperbolic 3-manifolds. The purpose of this handbook is to give a panorama of some of the most important aspects of Teichmuller theory. The handbook should be useful to specialists in the field, to graduate students, and more generally to mathematicians who want to learn about the subject. All the chapters are self-contained and have a pedagogical character. They are written by leading experts in the subject.
Book Synopsis Fundamentals of Hyperbolic Manifolds by : R. D. Canary
Download or read book Fundamentals of Hyperbolic Manifolds written by R. D. Canary and published by Cambridge University Press. This book was released on 2006-04-13 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents reissued articles from two classic sources on hyperbolic manifolds. Part I is an exposition of Chapters 8 and 9 of Thurston's pioneering Princeton Notes; there is a new introduction describing recent advances, with an up-to-date bibliography, giving a contemporary context in which the work can be set. Part II expounds the theory of convex hull boundaries and their bending laminations. A new appendix describes recent work. Part III is Thurston's famous paper that presents the notion of earthquakes in hyperbolic geometry and proves the earthquake theorem. The final part introduces the theory of measures on the limit set, drawing attention to related ergodic theory and the exponent of convergence. The book will be welcomed by graduate students and professional mathematicians who want a rigorous introduction to some basic tools essential for the modern theory of hyperbolic manifolds.
Download or read book Complex Geometry written by G. Komatsu and published by CRC Press. This book was released on 1992-11-19 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents the proceedings of an international conference on complex geometry and related topics, held in commemoration of the 50th anniversary of Osaka University, Osaka, Japan. The text focuses on the CR invariants, hyperbolic geometry, Yamabe-type problems, and harmonic maps.
Book Synopsis Differential Topology, Foliations, and Group Actions by : Paul A. Schweitzer
Download or read book Differential Topology, Foliations, and Group Actions written by Paul A. Schweitzer and published by American Mathematical Soc.. This book was released on 1994 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the Workshop on Topology held at the Pontificia Universidade Catolica in Rio de Janeiro in January 1992. Bringing together about one hundred mathematicians from Brazil and around the world, the workshop covered a variety of topics in differential and algebraic topology, including group actions, foliations, low-dimensional topology, and connections to differential geometry. The main concentration was on foliation theory, but there was a lively exchange on other current topics in topology. The volume contains an excellent list of open problems in foliation research, prepared with the participation of some of the top world experts in this area. Also presented here are two surveys on group actions---finite group actions and rigidity theory for Anosov actions---as well as an elementary survey of Thurston's geometric topology in dimensions 2 and 3 that would be accessible to advanced undergraduates and graduate students.
Book Synopsis Lectures on Dynamical Systems, Structural Stability, and Their Applications by : Kotik K. Lee
Download or read book Lectures on Dynamical Systems, Structural Stability, and Their Applications written by Kotik K. Lee and published by World Scientific. This book was released on 1992 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: The communication of knowledge on nonlinear dynamical systems, between the mathematicians working on the analytic approach and the scientists working mostly on the applications and numerical simulations has been less than ideal. This volume hopes to bridge the gap between books written on the subject by mathematicians and those written by scientists. The second objective of this volume is to draw attention to the need for cross-fertilization of knowledge between the physical and biological scientists. The third aim is to provide the reader with a personal guide on the study of global nonlinear dynamical systems.
Book Synopsis Low-dimensional Topology and Kleinian Groups by : D. B. A. Epstein
Download or read book Low-dimensional Topology and Kleinian Groups written by D. B. A. Epstein and published by CUP Archive. This book was released on 1986 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: Volume 2 is divided into three parts: the first 'Surfaces' contains an article by Thurston on earthquakes and by Penner on traintracks. The second part is entitled 'Knots and 3-Manifolds' and the final part 'Kleinian Groups'.
Book Synopsis Proceedings Of The International Congress Of Mathematicians 2010 (Icm 2010) (In 4 Volumes) - Vol. I: Plenary Lectures And Ceremonies, Vols. Ii-iv: Invited Lectures by : Rajendra Bhatia
Download or read book Proceedings Of The International Congress Of Mathematicians 2010 (Icm 2010) (In 4 Volumes) - Vol. I: Plenary Lectures And Ceremonies, Vols. Ii-iv: Invited Lectures written by Rajendra Bhatia and published by World Scientific. This book was released on 2011-06-06 with total page 4137 pages. Available in PDF, EPUB and Kindle. Book excerpt: ICM 2010 proceedings comprises a four-volume set containing articles based on plenary lectures and invited section lectures, the Abel and Noether lectures, as well as contributions based on lectures delivered by the recipients of the Fields Medal, the Nevanlinna, and Chern Prizes. The first volume will also contain the speeches at the opening and closing ceremonies and other highlights of the Congress.
Book Synopsis Collected Works of William P. Thurston with Commentary by : Benson Farb
Download or read book Collected Works of William P. Thurston with Commentary written by Benson Farb and published by American Mathematical Society. This book was released on 2022-07-19 with total page 783 pages. Available in PDF, EPUB and Kindle. Book excerpt: William Thurston's work has had a profound influence on mathematics. He connected whole mathematical subjects in entirely new ways and changed the way mathematicians think about geometry, topology, foliations, group theory, dynamical systems, and the way these areas interact. His emphasis on understanding and imagination in mathematical learning and thinking are integral elements of his distinctive legacy. This four-part collection brings together in one place Thurston's major writings, many of which are appearing in publication for the first time. Volumes I–III contain commentaries by the Editors. Volume IV includes a preface by Steven P. Kerckhoff. Volume I contains William Thurston's papers on foliations, mapping classes groups, and differential geometry.
Book Synopsis Knots and Primes by : Masanori Morishita
Download or read book Knots and Primes written by Masanori Morishita and published by Springer Nature. This book was released on with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book The Smith Conjecture written by and published by Academic Press. This book was released on 1984-05-01 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Smith Conjecture
Book Synopsis Handbook of Knot Theory by : William Menasco
Download or read book Handbook of Knot Theory written by William Menasco and published by Elsevier. This book was released on 2005-08-02 with total page 502 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a survey of current topics in the mathematical theory of knots. For a mathematician, a knot is a closed loop in 3-dimensional space: imagine knotting an extension cord and then closing it up by inserting its plug into its outlet. Knot theory is of central importance in pure and applied mathematics, as it stands at a crossroads of topology, combinatorics, algebra, mathematical physics and biochemistry. * Survey of mathematical knot theory * Articles by leading world authorities * Clear exposition, not over-technical * Accessible to readers with undergraduate background in mathematics
Book Synopsis Mathematics of Surfaces XII by : Ralph Martin
Download or read book Mathematics of Surfaces XII written by Ralph Martin and published by Springer. This book was released on 2007-08-28 with total page 517 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 12th IMA International Conference on the Mathematics of Surfaces, held in Sheffield, UK in September 2007. The papers cover a range of ideas from underlying theoretical tools to industrial uses of surfaces. Research is reported on theoretical aspects of surfaces as well as more practical topics.
Book Synopsis Hyperbolic Knot Theory by : Jessica S. Purcell
Download or read book Hyperbolic Knot Theory written by Jessica S. Purcell and published by American Mathematical Soc.. This book was released on 2020-10-06 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to hyperbolic geometry in dimension three, with motivation and applications arising from knot theory. Hyperbolic geometry was first used as a tool to study knots by Riley and then Thurston in the 1970s. By the 1980s, combining work of Mostow and Prasad with Gordon and Luecke, it was known that a hyperbolic structure on a knot complement in the 3-sphere gives a complete knot invariant. However, it remains a difficult problem to relate the hyperbolic geometry of a knot to other invariants arising from knot theory. In particular, it is difficult to determine hyperbolic geometric information from a knot diagram, which is classically used to describe a knot. This textbook provides background on these problems, and tools to determine hyperbolic information on knots. It also includes results and state-of-the art techniques on hyperbolic geometry and knot theory to date. The book was written to be interactive, with many examples and exercises. Some important results are left to guided exercises. The level is appropriate for graduate students with a basic background in algebraic topology, particularly fundamental groups and covering spaces. Some experience with some differential topology and Riemannian geometry will also be helpful.