Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Homotopical Quantum Field Theory
Download Homotopical Quantum Field Theory full books in PDF, epub, and Kindle. Read online Homotopical Quantum Field Theory ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Homotopical Quantum Field Theory by : Donald Yau
Download or read book Homotopical Quantum Field Theory written by Donald Yau and published by World Scientific. This book was released on 2019-11-11 with total page 311 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a general and powerful definition of homotopy algebraic quantum field theory and homotopy prefactorization algebra using a new coend definition of the Boardman-Vogt construction for a colored operad. All of their homotopy coherent structures are explained in details, along with a comparison between the two approaches at the operad level. With chapters on basic category theory, trees, and operads, this book is self-contained and is accessible to graduate students.
Book Synopsis Homotopy Quantum Field Theory by : Vladimir G. Turaev
Download or read book Homotopy Quantum Field Theory written by Vladimir G. Turaev and published by European Mathematical Society. This book was released on 2010 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: Homotopy Quantum Field Theory (HQFT) is a branch of Topological Quantum Field Theory founded by E. Witten and M. Atiyah. It applies ideas from theoretical physics to study principal bundles over manifolds and, more generally, homotopy classes of maps from manifolds to a fixed target space. This book is the first systematic exposition of Homotopy Quantum Field Theory. It starts with a formal definition of an HQFT and provides examples of HQFTs in all dimensions. The main body of the text is focused on $2$-dimensional and $3$-dimensional HQFTs. A study of these HQFTs leads to new algebraic objects: crossed Frobenius group-algebras, crossed ribbon group-categories, and Hopf group-coalgebras. These notions and their connections with HQFTs are discussed in detail. The text ends with several appendices including an outline of recent developments and a list of open problems. Three appendices by M. Muger and A. Virelizier summarize their work in this area. The book is addressed to mathematicians, theoretical physicists, and graduate students interested in topological aspects of quantum field theory. The exposition is self-contained and well suited for a one-semester graduate course. Prerequisites include only basics of algebra and topology.
Book Synopsis Lectures on Field Theory and Topology by : Daniel S. Freed
Download or read book Lectures on Field Theory and Topology written by Daniel S. Freed and published by American Mathematical Soc.. This book was released on 2019-08-23 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: These lectures recount an application of stable homotopy theory to a concrete problem in low energy physics: the classification of special phases of matter. While the joint work of the author and Michael Hopkins is a focal point, a general geometric frame of reference on quantum field theory is emphasized. Early lectures describe the geometric axiom systems introduced by Graeme Segal and Michael Atiyah in the late 1980s, as well as subsequent extensions. This material provides an entry point for mathematicians to delve into quantum field theory. Classification theorems in low dimensions are proved to illustrate the framework. The later lectures turn to more specialized topics in field theory, including the relationship between invertible field theories and stable homotopy theory, extended unitarity, anomalies, and relativistic free fermion systems. The accompanying mathematical explanations touch upon (higher) category theory, duals to the sphere spectrum, equivariant spectra, differential cohomology, and Dirac operators. The outcome of computations made using the Adams spectral sequence is presented and compared to results in the condensed matter literature obtained by very different means. The general perspectives and specific applications fuse into a compelling story at the interface of contemporary mathematics and theoretical physics.
Book Synopsis Perturbative Algebraic Quantum Field Theory by : Kasia Rejzner
Download or read book Perturbative Algebraic Quantum Field Theory written by Kasia Rejzner and published by Springer. This book was released on 2016-03-16 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: Perturbative Algebraic Quantum Field Theory (pAQFT), the subject of this book, is a complete and mathematically rigorous treatment of perturbative quantum field theory (pQFT) that doesn’t require the use of divergent quantities and works on a large class of Lorenzian manifolds. We discuss in detail the examples of scalar fields, gauge theories and the effective quantum gravity. pQFT models describe a wide range of physical phenomena and have remarkable agreement with experimental results. Despite this success, the theory suffers from many conceptual problems. pAQFT is a good candidate to solve many, if not all, of these conceptual problems. Chapters 1-3 provide some background in mathematics and physics. Chapter 4 concerns classical theory of the scalar field, which is subsequently quantized in chapters 5 and 6. Chapter 7 covers gauge theory and chapter 8 discusses effective quantum gravity. The book aims to be accessible to researchers and graduate students, who are interested in the mathematical foundations of pQFT.
Book Synopsis Towards the Mathematics of Quantum Field Theory by : Frédéric Paugam
Download or read book Towards the Mathematics of Quantum Field Theory written by Frédéric Paugam and published by Springer Science & Business Media. This book was released on 2014-02-20 with total page 485 pages. Available in PDF, EPUB and Kindle. Book excerpt: This ambitious and original book sets out to introduce to mathematicians (even including graduate students ) the mathematical methods of theoretical and experimental quantum field theory, with an emphasis on coordinate-free presentations of the mathematical objects in use. This in turn promotes the interaction between mathematicians and physicists by supplying a common and flexible language for the good of both communities, though mathematicians are the primary target. This reference work provides a coherent and complete mathematical toolbox for classical and quantum field theory, based on categorical and homotopical methods, representing an original contribution to the literature. The first part of the book introduces the mathematical methods needed to work with the physicists' spaces of fields, including parameterized and functional differential geometry, functorial analysis, and the homotopical geometric theory of non-linear partial differential equations, with applications to general gauge theories. The second part presents a large family of examples of classical field theories, both from experimental and theoretical physics, while the third part provides an introduction to quantum field theory, presents various renormalization methods, and discusses the quantization of factorization algebras.
Book Synopsis Factorization Algebras in Quantum Field Theory by : Kevin Costello
Download or read book Factorization Algebras in Quantum Field Theory written by Kevin Costello and published by Cambridge University Press. This book was released on 2017 with total page 399 pages. Available in PDF, EPUB and Kindle. Book excerpt: This first volume develops factorization algebras with a focus upon examples exhibiting their use in field theory, which will be useful for researchers and graduates.
Download or read book Colored Operads written by Donald Yau and published by American Mathematical Soc.. This book was released on 2016-02-29 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: The subject of this book is the theory of operads and colored operads, sometimes called symmetric multicategories. A (colored) operad is an abstract object which encodes operations with multiple inputs and one output and relations between such operations. The theory originated in the early 1970s in homotopy theory and quickly became very important in algebraic topology, algebra, algebraic geometry, and even theoretical physics (string theory). Topics covered include basic graph theory, basic category theory, colored operads, and algebras over colored operads. Free colored operads are discussed in complete detail and in full generality. The intended audience of this book includes students and researchers in mathematics and other sciences where operads and colored operads are used. The prerequisite for this book is minimal. Every major concept is thoroughly motivated. There are many graphical illustrations and about 150 exercises. This book can be used in a graduate course and for independent study.
Book Synopsis Mathematical Foundations of Quantum Field Theory and Perturbative String Theory by : Hisham Sati
Download or read book Mathematical Foundations of Quantum Field Theory and Perturbative String Theory written by Hisham Sati and published by American Mathematical Soc.. This book was released on 2011-12-07 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: Conceptual progress in fundamental theoretical physics is linked with the search for the suitable mathematical structures that model the physical systems. Quantum field theory (QFT) has proven to be a rich source of ideas for mathematics for a long time. However, fundamental questions such as ``What is a QFT?'' did not have satisfactory mathematical answers, especially on spaces with arbitrary topology, fundamental for the formulation of perturbative string theory. This book contains a collection of papers highlighting the mathematical foundations of QFT and its relevance to perturbative string theory as well as the deep techniques that have been emerging in the last few years. The papers are organized under three main chapters: Foundations for Quantum Field Theory, Quantization of Field Theories, and Two-Dimensional Quantum Field Theories. An introduction, written by the editors, provides an overview of the main underlying themes that bind together the papers in the volume.
Book Synopsis 2-Dimensional Categories by : Niles Johnson
Download or read book 2-Dimensional Categories written by Niles Johnson and published by Oxford University Press, USA. This book was released on 2021-01-31 with total page 636 pages. Available in PDF, EPUB and Kindle. Book excerpt: 2-Dimensional Categories is an introduction to 2-categories and bicategories, assuming only the most elementary aspects of category theory.
Book Synopsis Quantum Field Theory and Topology by : Albert S. Schwarz
Download or read book Quantum Field Theory and Topology written by Albert S. Schwarz and published by Springer Science & Business Media. This book was released on 2013-04-09 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years topology has firmly established itself as an important part of the physicist's mathematical arsenal. It has many applications, first of all in quantum field theory, but increasingly also in other areas of physics. The main focus of this book is on the results of quantum field theory that are obtained by topological methods. Some aspects of the theory of condensed matter are also discussed. Part I is an introduction to quantum field theory: it discusses the basic Lagrangians used in the theory of elementary particles. Part II is devoted to the applications of topology to quantum field theory. Part III covers the necessary mathematical background in summary form. The book is aimed at physicists interested in applications of topology to physics and at mathematicians wishing to familiarize themselves with quantum field theory and the mathematical methods used in this field. It is accessible to graduate students in physics and mathematics.
Book Synopsis Mathematical Aspects of Quantum Field Theories by : Damien Calaque
Download or read book Mathematical Aspects of Quantum Field Theories written by Damien Calaque and published by Springer. This book was released on 2015-01-06 with total page 572 pages. Available in PDF, EPUB and Kindle. Book excerpt: Despite its long history and stunning experimental successes, the mathematical foundation of perturbative quantum field theory is still a subject of ongoing research. This book aims at presenting some of the most recent advances in the field, and at reflecting the diversity of approaches and tools invented and currently employed. Both leading experts and comparative newcomers to the field present their latest findings, helping readers to gain a better understanding of not only quantum but also classical field theories. Though the book offers a valuable resource for mathematicians and physicists alike, the focus is more on mathematical developments. This volume consists of four parts: The first Part covers local aspects of perturbative quantum field theory, with an emphasis on the axiomatization of the algebra behind the operator product expansion. The second Part highlights Chern-Simons gauge theories, while the third examines (semi-)classical field theories. In closing, Part 4 addresses factorization homology and factorization algebras.
Book Synopsis Factorization Algebras in Quantum Field Theory by : Kevin Costello
Download or read book Factorization Algebras in Quantum Field Theory written by Kevin Costello and published by Cambridge University Press. This book was released on 2021-09-23 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: This second volume shows how factorization algebras arise from interacting field theories, both classical and quantum.
Book Synopsis Quantum Field Theory I: Basics in Mathematics and Physics by : Eberhard Zeidler
Download or read book Quantum Field Theory I: Basics in Mathematics and Physics written by Eberhard Zeidler and published by Springer Science & Business Media. This book was released on 2007-04-18 with total page 1060 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first volume of a modern introduction to quantum field theory which addresses both mathematicians and physicists, at levels ranging from advanced undergraduate students to professional scientists. The book bridges the acknowledged gap between the different languages used by mathematicians and physicists. For students of mathematics the author shows that detailed knowledge of the physical background helps to motivate the mathematical subjects and to discover interesting interrelationships between quite different mathematical topics. For students of physics, fairly advanced mathematics is presented, which goes beyond the usual curriculum in physics.
Book Synopsis Frobenius Algebras and 2-D Topological Quantum Field Theories by : Joachim Kock
Download or read book Frobenius Algebras and 2-D Topological Quantum Field Theories written by Joachim Kock and published by Cambridge University Press. This book was released on 2004 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: This 2003 book describes a striking connection between topology and algebra, namely that 2D topological quantum field theories are equivalent to commutative Frobenius algebras. The precise formulation of the theorem and its proof is given in terms of monoidal categories, and the main purpose of the book is to develop these concepts from an elementary level, and more generally serve as an introduction to categorical viewpoints in mathematics. Rather than just proving the theorem, it is shown how the result fits into a more general pattern concerning universal monoidal categories for algebraic structures. Throughout, the emphasis is on the interplay between algebra and topology, with graphical interpretation of algebraic operations, and topological structures described algebraically in terms of generators and relations. The book will prove valuable to students or researchers entering this field who will learn a host of modern techniques that will prove useful for future work.
Book Synopsis Thermal Quantum Field Theory: Algebraic Aspects And Applications by : Faqir C Khanna
Download or read book Thermal Quantum Field Theory: Algebraic Aspects And Applications written by Faqir C Khanna and published by World Scientific. This book was released on 2009-02-06 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph presents recent developments in quantum field theory at finite temperature. By using Lie groups, ideas from thermal theory are considered with concepts of symmetry, allowing for applications not only to quantum field theory but also to transport theory, quantum optics and statistical mechanics. This includes an analysis of geometrical and topological aspects of spatially confined systems with applications to the Casimir effect, superconductivity and phase transitions. Finally, some developments in open systems are also considered. The book provides a unified picture of the fundamental aspects in thermal quantum field theory and their applications, and is important to the field as a result, since it combines several diverse ideas that lead to a better understanding of different areas of physics.
Book Synopsis Mathematical Foundations Of Quantum Field Theory by : Albert Schwarz
Download or read book Mathematical Foundations Of Quantum Field Theory written by Albert Schwarz and published by World Scientific. This book was released on 2020-04-15 with total page 461 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is very different from other books devoted to quantum field theory, both in the style of exposition and in the choice of topics. Written for both mathematicians and physicists, the author explains the theoretical formulation with a mixture of rigorous proofs and heuristic arguments; references are given for those who are looking for more details. The author is also careful to avoid ambiguous definitions and statements that can be found in some physics textbooks.In terms of topics, almost all other books are devoted to relativistic quantum field theory, conversely this book is concentrated on the material that does not depend on the assumptions of Lorentz-invariance and/or locality. It contains also a chapter discussing application of methods of quantum field theory to statistical physics, in particular to the derivation of the diagram techniques that appear in thermo-field dynamics and Keldysh formalism. It is not assumed that the reader is familiar with quantum mechanics; the book contains a short introduction to quantum mechanics for mathematicians and an appendix devoted to some mathematical facts used in the book.
Book Synopsis Homotopical Topology by : Anatoly Fomenko
Download or read book Homotopical Topology written by Anatoly Fomenko and published by Springer. This book was released on 2016-06-24 with total page 635 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook on algebraic topology updates a popular textbook from the golden era of the Moscow school of I. M. Gelfand. The first English translation, done many decades ago, remains very much in demand, although it has been long out-of-print and is difficult to obtain. Therefore, this updated English edition will be much welcomed by the mathematical community. Distinctive features of this book include: a concise but fully rigorous presentation, supplemented by a plethora of illustrations of a high technical and artistic caliber; a huge number of nontrivial examples and computations done in detail; a deeper and broader treatment of topics in comparison to most beginning books on algebraic topology; an extensive, and very concrete, treatment of the machinery of spectral sequences. The second edition contains an entirely new chapter on K-theory and the Riemann-Roch theorem (after Hirzebruch and Grothendieck).