Statistical Foundations of Data Science

Download Statistical Foundations of Data Science PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 0429527616
Total Pages : 942 pages
Book Rating : 4.4/5 (295 download)

DOWNLOAD NOW!


Book Synopsis Statistical Foundations of Data Science by : Jianqing Fan

Download or read book Statistical Foundations of Data Science written by Jianqing Fan and published by CRC Press. This book was released on 2020-09-21 with total page 942 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical Foundations of Data Science gives a thorough introduction to commonly used statistical models, contemporary statistical machine learning techniques and algorithms, along with their mathematical insights and statistical theories. It aims to serve as a graduate-level textbook and a research monograph on high-dimensional statistics, sparsity and covariance learning, machine learning, and statistical inference. It includes ample exercises that involve both theoretical studies as well as empirical applications. The book begins with an introduction to the stylized features of big data and their impacts on statistical analysis. It then introduces multiple linear regression and expands the techniques of model building via nonparametric regression and kernel tricks. It provides a comprehensive account on sparsity explorations and model selections for multiple regression, generalized linear models, quantile regression, robust regression, hazards regression, among others. High-dimensional inference is also thoroughly addressed and so is feature screening. The book also provides a comprehensive account on high-dimensional covariance estimation, learning latent factors and hidden structures, as well as their applications to statistical estimation, inference, prediction and machine learning problems. It also introduces thoroughly statistical machine learning theory and methods for classification, clustering, and prediction. These include CART, random forests, boosting, support vector machines, clustering algorithms, sparse PCA, and deep learning.

Frontiers in Massive Data Analysis

Download Frontiers in Massive Data Analysis PDF Online Free

Author :
Publisher : National Academies Press
ISBN 13 : 0309287812
Total Pages : 191 pages
Book Rating : 4.3/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Frontiers in Massive Data Analysis by : National Research Council

Download or read book Frontiers in Massive Data Analysis written by National Research Council and published by National Academies Press. This book was released on 2013-09-03 with total page 191 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data mining of massive data sets is transforming the way we think about crisis response, marketing, entertainment, cybersecurity and national intelligence. Collections of documents, images, videos, and networks are being thought of not merely as bit strings to be stored, indexed, and retrieved, but as potential sources of discovery and knowledge, requiring sophisticated analysis techniques that go far beyond classical indexing and keyword counting, aiming to find relational and semantic interpretations of the phenomena underlying the data. Frontiers in Massive Data Analysis examines the frontier of analyzing massive amounts of data, whether in a static database or streaming through a system. Data at that scale-terabytes and petabytes-is increasingly common in science (e.g., particle physics, remote sensing, genomics), Internet commerce, business analytics, national security, communications, and elsewhere. The tools that work to infer knowledge from data at smaller scales do not necessarily work, or work well, at such massive scale. New tools, skills, and approaches are necessary, and this report identifies many of them, plus promising research directions to explore. Frontiers in Massive Data Analysis discusses pitfalls in trying to infer knowledge from massive data, and it characterizes seven major classes of computation that are common in the analysis of massive data. Overall, this report illustrates the cross-disciplinary knowledge-from computer science, statistics, machine learning, and application disciplines-that must be brought to bear to make useful inferences from massive data.

Bayesian Data Analysis, Third Edition

Download Bayesian Data Analysis, Third Edition PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1439840954
Total Pages : 677 pages
Book Rating : 4.4/5 (398 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Data Analysis, Third Edition by : Andrew Gelman

Download or read book Bayesian Data Analysis, Third Edition written by Andrew Gelman and published by CRC Press. This book was released on 2013-11-01 with total page 677 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.

Analyzing High-Dimensional Gene Expression and DNA Methylation Data with R

Download Analyzing High-Dimensional Gene Expression and DNA Methylation Data with R PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 0429532369
Total Pages : 237 pages
Book Rating : 4.4/5 (295 download)

DOWNLOAD NOW!


Book Synopsis Analyzing High-Dimensional Gene Expression and DNA Methylation Data with R by : Hongmei Zhang

Download or read book Analyzing High-Dimensional Gene Expression and DNA Methylation Data with R written by Hongmei Zhang and published by CRC Press. This book was released on 2020-05-14 with total page 237 pages. Available in PDF, EPUB and Kindle. Book excerpt: Analyzing high-dimensional gene expression and DNA methylation data with R is the first practical book that shows a ``pipeline" of analytical methods with concrete examples starting from raw gene expression and DNA methylation data at the genome scale. Methods on quality control, data pre-processing, data mining, and further assessments are presented in the book, and R programs based on simulated data and real data are included. Codes with example data are all reproducible. Features: • Provides a sequence of analytical tools for genome-scale gene expression data and DNA methylation data, starting from quality control and pre-processing of raw genome-scale data. • Organized by a parallel presentation with explanation on statistical methods and corresponding R packages/functions in quality control, pre-processing, and data analyses (e.g., clustering and networks). • Includes source codes with simulated and real data to reproduce the results. Readers are expected to gain the ability to independently analyze genome-scaled expression and methylation data and detect potential biomarkers. This book is ideal for students majoring in statistics, biostatistics, and bioinformatics and researchers with an interest in high dimensional genetic and epigenetic studies.

Statistical Rethinking

Download Statistical Rethinking PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1315362619
Total Pages : 488 pages
Book Rating : 4.3/5 (153 download)

DOWNLOAD NOW!


Book Synopsis Statistical Rethinking by : Richard McElreath

Download or read book Statistical Rethinking written by Richard McElreath and published by CRC Press. This book was released on 2018-01-03 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical Rethinking: A Bayesian Course with Examples in R and Stan builds readers’ knowledge of and confidence in statistical modeling. Reflecting the need for even minor programming in today’s model-based statistics, the book pushes readers to perform step-by-step calculations that are usually automated. This unique computational approach ensures that readers understand enough of the details to make reasonable choices and interpretations in their own modeling work. The text presents generalized linear multilevel models from a Bayesian perspective, relying on a simple logical interpretation of Bayesian probability and maximum entropy. It covers from the basics of regression to multilevel models. The author also discusses measurement error, missing data, and Gaussian process models for spatial and network autocorrelation. By using complete R code examples throughout, this book provides a practical foundation for performing statistical inference. Designed for both PhD students and seasoned professionals in the natural and social sciences, it prepares them for more advanced or specialized statistical modeling. Web Resource The book is accompanied by an R package (rethinking) that is available on the author’s website and GitHub. The two core functions (map and map2stan) of this package allow a variety of statistical models to be constructed from standard model formulas.

Handbook of Statistical Genomics

Download Handbook of Statistical Genomics PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119429250
Total Pages : 1740 pages
Book Rating : 4.1/5 (194 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Statistical Genomics by : David J. Balding

Download or read book Handbook of Statistical Genomics written by David J. Balding and published by John Wiley & Sons. This book was released on 2019-07-09 with total page 1740 pages. Available in PDF, EPUB and Kindle. Book excerpt: A timely update of a highly popular handbook on statistical genomics This new, two-volume edition of a classic text provides a thorough introduction to statistical genomics, a vital resource for advanced graduate students, early-career researchers and new entrants to the field. It introduces new and updated information on developments that have occurred since the 3rd edition. Widely regarded as the reference work in the field, it features new chapters focusing on statistical aspects of data generated by new sequencing technologies, including sequence-based functional assays. It expands on previous coverage of the many processes between genotype and phenotype, including gene expression and epigenetics, as well as metabolomics. It also examines population genetics and evolutionary models and inference, with new chapters on the multi-species coalescent, admixture and ancient DNA, as well as genetic association studies including causal analyses and variant interpretation. The Handbook of Statistical Genomics focuses on explaining the main ideas, analysis methods and algorithms, citing key recent and historic literature for further details and references. It also includes a glossary of terms, acronyms and abbreviations, and features extensive cross-referencing between chapters, tying the different areas together. With heavy use of up-to-date examples and references to web-based resources, this continues to be a must-have reference in a vital area of research. Provides much-needed, timely coverage of new developments in this expanding area of study Numerous, brand new chapters, for example covering bacterial genomics, microbiome and metagenomics Detailed coverage of application areas, with chapters on plant breeding, conservation and forensic genetics Extensive coverage of human genetic epidemiology, including ethical aspects Edited by one of the leading experts in the field along with rising stars as his co-editors Chapter authors are world-renowned experts in the field, and newly emerging leaders. The Handbook of Statistical Genomics is an excellent introductory text for advanced graduate students and early-career researchers involved in statistical genetics.

Machine Learning in Radiation Oncology

Download Machine Learning in Radiation Oncology PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319183052
Total Pages : 336 pages
Book Rating : 4.3/5 (191 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning in Radiation Oncology by : Issam El Naqa

Download or read book Machine Learning in Radiation Oncology written by Issam El Naqa and published by Springer. This book was released on 2015-06-19 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: ​This book provides a complete overview of the role of machine learning in radiation oncology and medical physics, covering basic theory, methods, and a variety of applications in medical physics and radiotherapy. An introductory section explains machine learning, reviews supervised and unsupervised learning methods, discusses performance evaluation, and summarizes potential applications in radiation oncology. Detailed individual sections are then devoted to the use of machine learning in quality assurance; computer-aided detection, including treatment planning and contouring; image-guided radiotherapy; respiratory motion management; and treatment response modeling and outcome prediction. The book will be invaluable for students and residents in medical physics and radiation oncology and will also appeal to more experienced practitioners and researchers and members of applied machine learning communities.

Health and Environmental Risk Assessment

Download Health and Environmental Risk Assessment PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 1483286312
Total Pages : 313 pages
Book Rating : 4.4/5 (832 download)

DOWNLOAD NOW!


Book Synopsis Health and Environmental Risk Assessment by : P. F. Ricci

Download or read book Health and Environmental Risk Assessment written by P. F. Ricci and published by Elsevier. This book was released on 2013-10-22 with total page 313 pages. Available in PDF, EPUB and Kindle. Book excerpt: Process and input-output analysis have emerged as the two principal methods of analyzing health risks of energy technologies. This book describes applications and differences between these two methods with discussions of sources or error and uncertainty, data limitations and some solutions to common problems. Its goals are to provide understanding of the strengths and weaknesses of the methods and to provide a basis for standardizing risk assessment for energy policy analysis. Sections of the book describe risk analysis and develop issues common to both the process and input-output methods, describe data bases and their limitations, discuss use of environmental models for generating environmental information not available in data bases, describe applications of the methods in case studies, and discuss the state-of-the-art of the two models and opportunities for combining them to take advantage of their relative strengths and weaknesses.

Principles of Data Mining

Download Principles of Data Mining PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 9780262082907
Total Pages : 594 pages
Book Rating : 4.0/5 (829 download)

DOWNLOAD NOW!


Book Synopsis Principles of Data Mining by : David J. Hand

Download or read book Principles of Data Mining written by David J. Hand and published by MIT Press. This book was released on 2001-08-17 with total page 594 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first truly interdisciplinary text on data mining, blending the contributions of information science, computer science, and statistics. The growing interest in data mining is motivated by a common problem across disciplines: how does one store, access, model, and ultimately describe and understand very large data sets? Historically, different aspects of data mining have been addressed independently by different disciplines. This is the first truly interdisciplinary text on data mining, blending the contributions of information science, computer science, and statistics. The book consists of three sections. The first, foundations, provides a tutorial overview of the principles underlying data mining algorithms and their application. The presentation emphasizes intuition rather than rigor. The second section, data mining algorithms, shows how algorithms are constructed to solve specific problems in a principled manner. The algorithms covered include trees and rules for classification and regression, association rules, belief networks, classical statistical models, nonlinear models such as neural networks, and local "memory-based" models. The third section shows how all of the preceding analysis fits together when applied to real-world data mining problems. Topics include the role of metadata, how to handle missing data, and data preprocessing.

Statistics and Truth

Download Statistics and Truth PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9810231113
Total Pages : 213 pages
Book Rating : 4.8/5 (12 download)

DOWNLOAD NOW!


Book Synopsis Statistics and Truth by : Calyampudi Radhakrishna Rao

Download or read book Statistics and Truth written by Calyampudi Radhakrishna Rao and published by World Scientific. This book was released on 1997 with total page 213 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by one of the top most statisticians with experience in diverse fields of applications of statistics, the book deals with the philosophical and methodological aspects of information technology, collection and analysis of data to provide insight into a problem, whether it is scientific research, policy making by government or decision making in our daily lives.The author dispels the doubts that chance is an expression of our ignorance which makes accurate prediction impossible and illustrates how our thinking has changed with quantification of uncertainty by showing that chance is no longer the obstructor but a way of expressing our knowledge. Indeed, chance can create and help in the investigation of truth. It is eloquently demonstrated with numerous examples of applications that statistics is the science, technology and art of extracting information from data and is based on a study of the laws of chance. It is highlighted how statistical ideas played a vital role in scientific and other investigations even before statistics was recognized as a separate discipline and how statistics is now evolving as a versatile, powerful and inevitable tool in diverse fields of human endeavor such as literature, legal matters, industry, archaeology and medicine.Use of statistics to the layman in improving the quality of life through wise decision making is emphasized.

Genomic Clinical Trials and Predictive Medicine

Download Genomic Clinical Trials and Predictive Medicine PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107008808
Total Pages : 159 pages
Book Rating : 4.1/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Genomic Clinical Trials and Predictive Medicine by : Richard M. Simon

Download or read book Genomic Clinical Trials and Predictive Medicine written by Richard M. Simon and published by Cambridge University Press. This book was released on 2013-01-07 with total page 159 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on novel approaches that provide a reliable basis for identifying which patients are likely to benefit from each treatment. Aimed at both clinical investigators and statisticians, it covers the development and validation of prognostic and predictive biomarkers and their integration into clinical trials.

A First Course in Bayesian Statistical Methods

Download A First Course in Bayesian Statistical Methods PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387924078
Total Pages : 270 pages
Book Rating : 4.3/5 (879 download)

DOWNLOAD NOW!


Book Synopsis A First Course in Bayesian Statistical Methods by : Peter D. Hoff

Download or read book A First Course in Bayesian Statistical Methods written by Peter D. Hoff and published by Springer Science & Business Media. This book was released on 2009-06-02 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: A self-contained introduction to probability, exchangeability and Bayes’ rule provides a theoretical understanding of the applied material. Numerous examples with R-code that can be run "as-is" allow the reader to perform the data analyses themselves. The development of Monte Carlo and Markov chain Monte Carlo methods in the context of data analysis examples provides motivation for these computational methods.

Feature Selection for Data and Pattern Recognition

Download Feature Selection for Data and Pattern Recognition PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9783662508459
Total Pages : 0 pages
Book Rating : 4.5/5 (84 download)

DOWNLOAD NOW!


Book Synopsis Feature Selection for Data and Pattern Recognition by : Urszula Stańczyk

Download or read book Feature Selection for Data and Pattern Recognition written by Urszula Stańczyk and published by Springer. This book was released on 2016-09-24 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This research book provides the reader with a selection of high-quality texts dedicated to current progress, new developments and research trends in feature selection for data and pattern recognition. Even though it has been the subject of interest for some time, feature selection remains one of actively pursued avenues of investigations due to its importance and bearing upon other problems and tasks. This volume points to a number of advances topically subdivided into four parts: estimation of importance of characteristic features, their relevance, dependencies, weighting and ranking; rough set approach to attribute reduction with focus on relative reducts; construction of rules and their evaluation; and data- and domain-oriented methodologies.

Statistical Learning with Sparsity

Download Statistical Learning with Sparsity PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1498712177
Total Pages : 354 pages
Book Rating : 4.4/5 (987 download)

DOWNLOAD NOW!


Book Synopsis Statistical Learning with Sparsity by : Trevor Hastie

Download or read book Statistical Learning with Sparsity written by Trevor Hastie and published by CRC Press. This book was released on 2015-05-07 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover New Methods for Dealing with High-Dimensional DataA sparse statistical model has only a small number of nonzero parameters or weights; therefore, it is much easier to estimate and interpret than a dense model. Statistical Learning with Sparsity: The Lasso and Generalizations presents methods that exploit sparsity to help recover the underl

Statistics for High-Dimensional Data

Download Statistics for High-Dimensional Data PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 364220192X
Total Pages : 568 pages
Book Rating : 4.6/5 (422 download)

DOWNLOAD NOW!


Book Synopsis Statistics for High-Dimensional Data by : Peter Bühlmann

Download or read book Statistics for High-Dimensional Data written by Peter Bühlmann and published by Springer Science & Business Media. This book was released on 2011-06-08 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern statistics deals with large and complex data sets, and consequently with models containing a large number of parameters. This book presents a detailed account of recently developed approaches, including the Lasso and versions of it for various models, boosting methods, undirected graphical modeling, and procedures controlling false positive selections. A special characteristic of the book is that it contains comprehensive mathematical theory on high-dimensional statistics combined with methodology, algorithms and illustrations with real data examples. This in-depth approach highlights the methods’ great potential and practical applicability in a variety of settings. As such, it is a valuable resource for researchers, graduate students and experts in statistics, applied mathematics and computer science.

Codon Evolution

Download Codon Evolution PDF Online Free

Author :
Publisher : Oxford University Press
ISBN 13 : 019960116X
Total Pages : 297 pages
Book Rating : 4.1/5 (996 download)

DOWNLOAD NOW!


Book Synopsis Codon Evolution by : Gina M. Cannarozzi

Download or read book Codon Evolution written by Gina M. Cannarozzi and published by Oxford University Press. This book was released on 2012-02-23 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: The second part of the book focuses on codon usage bias.

Integrating Omics Data

Download Integrating Omics Data PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107069114
Total Pages : 497 pages
Book Rating : 4.1/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Integrating Omics Data by : George Tseng

Download or read book Integrating Omics Data written by George Tseng and published by Cambridge University Press. This book was released on 2015-09-23 with total page 497 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tutorial chapters by leaders in the field introduce state-of-the-art methods to handle information integration problems of omics data.