Handbook of Approximate Bayesian Computation

Download Handbook of Approximate Bayesian Computation PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1439881510
Total Pages : 679 pages
Book Rating : 4.4/5 (398 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Approximate Bayesian Computation by : Scott A. Sisson

Download or read book Handbook of Approximate Bayesian Computation written by Scott A. Sisson and published by CRC Press. This book was released on 2018-09-03 with total page 679 pages. Available in PDF, EPUB and Kindle. Book excerpt: As the world becomes increasingly complex, so do the statistical models required to analyse the challenging problems ahead. For the very first time in a single volume, the Handbook of Approximate Bayesian Computation (ABC) presents an extensive overview of the theory, practice and application of ABC methods. These simple, but powerful statistical techniques, take Bayesian statistics beyond the need to specify overly simplified models, to the setting where the model is defined only as a process that generates data. This process can be arbitrarily complex, to the point where standard Bayesian techniques based on working with tractable likelihood functions would not be viable. ABC methods finesse the problem of model complexity within the Bayesian framework by exploiting modern computational power, thereby permitting approximate Bayesian analyses of models that would otherwise be impossible to implement. The Handbook of ABC provides illuminating insight into the world of Bayesian modelling for intractable models for both experts and newcomers alike. It is an essential reference book for anyone interested in learning about and implementing ABC techniques to analyse complex models in the modern world.

Handbook of Approximate Bayesian Computation

Download Handbook of Approximate Bayesian Computation PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1351643460
Total Pages : 513 pages
Book Rating : 4.3/5 (516 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Approximate Bayesian Computation by : Scott A. Sisson

Download or read book Handbook of Approximate Bayesian Computation written by Scott A. Sisson and published by CRC Press. This book was released on 2018-09-03 with total page 513 pages. Available in PDF, EPUB and Kindle. Book excerpt: As the world becomes increasingly complex, so do the statistical models required to analyse the challenging problems ahead. For the very first time in a single volume, the Handbook of Approximate Bayesian Computation (ABC) presents an extensive overview of the theory, practice and application of ABC methods. These simple, but powerful statistical techniques, take Bayesian statistics beyond the need to specify overly simplified models, to the setting where the model is defined only as a process that generates data. This process can be arbitrarily complex, to the point where standard Bayesian techniques based on working with tractable likelihood functions would not be viable. ABC methods finesse the problem of model complexity within the Bayesian framework by exploiting modern computational power, thereby permitting approximate Bayesian analyses of models that would otherwise be impossible to implement. The Handbook of ABC provides illuminating insight into the world of Bayesian modelling for intractable models for both experts and newcomers alike. It is an essential reference book for anyone interested in learning about and implementing ABC techniques to analyse complex models in the modern world.

Handbook of Mixture Analysis

Download Handbook of Mixture Analysis PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 0429508867
Total Pages : 489 pages
Book Rating : 4.4/5 (295 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Mixture Analysis by : Sylvia Fruhwirth-Schnatter

Download or read book Handbook of Mixture Analysis written by Sylvia Fruhwirth-Schnatter and published by CRC Press. This book was released on 2019-01-04 with total page 489 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mixture models have been around for over 150 years, and they are found in many branches of statistical modelling, as a versatile and multifaceted tool. They can be applied to a wide range of data: univariate or multivariate, continuous or categorical, cross-sectional, time series, networks, and much more. Mixture analysis is a very active research topic in statistics and machine learning, with new developments in methodology and applications taking place all the time. The Handbook of Mixture Analysis is a very timely publication, presenting a broad overview of the methods and applications of this important field of research. It covers a wide array of topics, including the EM algorithm, Bayesian mixture models, model-based clustering, high-dimensional data, hidden Markov models, and applications in finance, genomics, and astronomy. Features: Provides a comprehensive overview of the methods and applications of mixture modelling and analysis Divided into three parts: Foundations and Methods; Mixture Modelling and Extensions; and Selected Applications Contains many worked examples using real data, together with computational implementation, to illustrate the methods described Includes contributions from the leading researchers in the field The Handbook of Mixture Analysis is targeted at graduate students and young researchers new to the field. It will also be an important reference for anyone working in this field, whether they are developing new methodology, or applying the models to real scientific problems.

Handbook of Regression Modeling in People Analytics

Download Handbook of Regression Modeling in People Analytics PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000427897
Total Pages : 272 pages
Book Rating : 4.0/5 (4 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Regression Modeling in People Analytics by : Keith McNulty

Download or read book Handbook of Regression Modeling in People Analytics written by Keith McNulty and published by CRC Press. This book was released on 2021-07-29 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: Despite the recent rapid growth in machine learning and predictive analytics, many of the statistical questions that are faced by researchers and practitioners still involve explaining why something is happening. Regression analysis is the best ‘swiss army knife’ we have for answering these kinds of questions. This book is a learning resource on inferential statistics and regression analysis. It teaches how to do a wide range of statistical analyses in both R and in Python, ranging from simple hypothesis testing to advanced multivariate modelling. Although it is primarily focused on examples related to the analysis of people and talent, the methods easily transfer to any discipline. The book hits a ‘sweet spot’ where there is just enough mathematical theory to support a strong understanding of the methods, but with a step-by-step guide and easily reproducible examples and code, so that the methods can be put into practice immediately. This makes the book accessible to a wide readership, from public and private sector analysts and practitioners to students and researchers. Key Features: 16 accompanying datasets across a wide range of contexts (e.g. academic, corporate, sports, marketing) Clear step-by-step instructions on executing the analyses Clear guidance on how to interpret results Primary instruction in R but added sections for Python coders Discussion exercises and data exercises for each of the main chapters Final chapter of practice material and datasets ideal for class homework or project work.

Bayesian Data Analysis, Third Edition

Download Bayesian Data Analysis, Third Edition PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1439840954
Total Pages : 677 pages
Book Rating : 4.4/5 (398 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Data Analysis, Third Edition by : Andrew Gelman

Download or read book Bayesian Data Analysis, Third Edition written by Andrew Gelman and published by CRC Press. This book was released on 2013-11-01 with total page 677 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.

Bayesian Computation with R

Download Bayesian Computation with R PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387922989
Total Pages : 304 pages
Book Rating : 4.3/5 (879 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Computation with R by : Jim Albert

Download or read book Bayesian Computation with R written by Jim Albert and published by Springer Science & Business Media. This book was released on 2009-04-20 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: There has been dramatic growth in the development and application of Bayesian inference in statistics. Berger (2000) documents the increase in Bayesian activity by the number of published research articles, the number of books,andtheextensivenumberofapplicationsofBayesianarticlesinapplied disciplines such as science and engineering. One reason for the dramatic growth in Bayesian modeling is the availab- ity of computational algorithms to compute the range of integrals that are necessary in a Bayesian posterior analysis. Due to the speed of modern c- puters, it is now possible to use the Bayesian paradigm to ?t very complex models that cannot be ?t by alternative frequentist methods. To ?t Bayesian models, one needs a statistical computing environment. This environment should be such that one can: write short scripts to de?ne a Bayesian model use or write functions to summarize a posterior distribution use functions to simulate from the posterior distribution construct graphs to illustrate the posterior inference An environment that meets these requirements is the R system. R provides a wide range of functions for data manipulation, calculation, and graphical d- plays. Moreover, it includes a well-developed, simple programming language that users can extend by adding new functions. Many such extensions of the language in the form of packages are easily downloadable from the Comp- hensive R Archive Network (CRAN).

Handbook of Statistical Genetics

Download Handbook of Statistical Genetics PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 9780470997628
Total Pages : 1616 pages
Book Rating : 4.9/5 (976 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Statistical Genetics by : David J. Balding

Download or read book Handbook of Statistical Genetics written by David J. Balding and published by John Wiley & Sons. This book was released on 2008-06-10 with total page 1616 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Handbook for Statistical Genetics is widely regarded as the reference work in the field. However, the field has developed considerably over the past three years. In particular the modeling of genetic networks has advanced considerably via the evolution of microarray analysis. As a consequence the 3rd edition of the handbook contains a much expanded section on Network Modeling, including 5 new chapters covering metabolic networks, graphical modeling and inference and simulation of pedigrees and genealogies. Other chapters new to the 3rd edition include Human Population Genetics, Genome-wide Association Studies, Family-based Association Studies, Pharmacogenetics, Epigenetics, Ethic and Insurance. As with the second Edition, the Handbook includes a glossary of terms, acronyms and abbreviations, and features extensive cross-referencing between the chapters, tying the different areas together. With heavy use of up-to-date examples, real-life case studies and references to web-based resources, this continues to be must-have reference in a vital area of research. Edited by the leading international authorities in the field. David Balding - Department of Epidemiology & Public Health, Imperial College An advisor for our Probability & Statistics series, Professor Balding is also a previous Wiley author, having written Weight-of-Evidence for Forensic DNA Profiles, as well as having edited the two previous editions of HSG. With over 20 years teaching experience, he’s also had dozens of articles published in numerous international journals. Martin Bishop – Head of the Bioinformatics Division at the HGMP Resource Centre As well as the first two editions of HSG, Dr Bishop has edited a number of introductory books on the application of informatics to molecular biology and genetics. He is the Associate Editor of the journal Bioinformatics and Managing Editor of Briefings in Bioinformatics. Chris Cannings – Division of Genomic Medicine, University of Sheffield With over 40 years teaching in the area, Professor Cannings has published over 100 papers and is on the editorial board of many related journals. Co-editor of the two previous editions of HSG, he also authored a book on this topic.

Handbook of Infectious Disease Data Analysis

Download Handbook of Infectious Disease Data Analysis PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1351839322
Total Pages : 567 pages
Book Rating : 4.3/5 (518 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Infectious Disease Data Analysis by : Leonhard Held

Download or read book Handbook of Infectious Disease Data Analysis written by Leonhard Held and published by CRC Press. This book was released on 2019-11-07 with total page 567 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent years have seen an explosion in new kinds of data on infectious diseases, including data on social contacts, whole genome sequences of pathogens, biomarkers for susceptibility to infection, serological panel data, and surveillance data. The Handbook of Infectious Disease Data Analysis provides an overview of many key statistical methods that have been developed in response to such new data streams and the associated ability to address key scientific and epidemiological questions. A unique feature of the Handbook is the wide range of topics covered. Key features Contributors include many leading researchers in the field Divided into four main sections: Basic concepts, Analysis of Outbreak Data, Analysis of Seroprevalence Data, Analysis of Surveillance Data Numerous case studies and examples throughout Provides both introductory material and key reference material

Statistical Rethinking

Download Statistical Rethinking PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1315362619
Total Pages : 488 pages
Book Rating : 4.3/5 (153 download)

DOWNLOAD NOW!


Book Synopsis Statistical Rethinking by : Richard McElreath

Download or read book Statistical Rethinking written by Richard McElreath and published by CRC Press. This book was released on 2018-01-03 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical Rethinking: A Bayesian Course with Examples in R and Stan builds readers’ knowledge of and confidence in statistical modeling. Reflecting the need for even minor programming in today’s model-based statistics, the book pushes readers to perform step-by-step calculations that are usually automated. This unique computational approach ensures that readers understand enough of the details to make reasonable choices and interpretations in their own modeling work. The text presents generalized linear multilevel models from a Bayesian perspective, relying on a simple logical interpretation of Bayesian probability and maximum entropy. It covers from the basics of regression to multilevel models. The author also discusses measurement error, missing data, and Gaussian process models for spatial and network autocorrelation. By using complete R code examples throughout, this book provides a practical foundation for performing statistical inference. Designed for both PhD students and seasoned professionals in the natural and social sciences, it prepares them for more advanced or specialized statistical modeling. Web Resource The book is accompanied by an R package (rethinking) that is available on the author’s website and GitHub. The two core functions (map and map2stan) of this package allow a variety of statistical models to be constructed from standard model formulas.

Handbook of Computational Social Choice

Download Handbook of Computational Social Choice PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1316489752
Total Pages : 553 pages
Book Rating : 4.3/5 (164 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Computational Social Choice by : Felix Brandt

Download or read book Handbook of Computational Social Choice written by Felix Brandt and published by Cambridge University Press. This book was released on 2016-04-25 with total page 553 pages. Available in PDF, EPUB and Kindle. Book excerpt: The rapidly growing field of computational social choice, at the intersection of computer science and economics, deals with the computational aspects of collective decision making. This handbook, written by thirty-six prominent members of the computational social choice community, covers the field comprehensively. Chapters devoted to each of the field's major themes offer detailed introductions. Topics include voting theory (such as the computational complexity of winner determination and manipulation in elections), fair allocation (such as algorithms for dividing divisible and indivisible goods), coalition formation (such as matching and hedonic games), and many more. Graduate students, researchers, and professionals in computer science, economics, mathematics, political science, and philosophy will benefit from this accessible and self-contained book.

Bayesian Filtering and Smoothing

Download Bayesian Filtering and Smoothing PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 110703065X
Total Pages : 255 pages
Book Rating : 4.1/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Filtering and Smoothing by : Simo Särkkä

Download or read book Bayesian Filtering and Smoothing written by Simo Särkkä and published by Cambridge University Press. This book was released on 2013-09-05 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: A unified Bayesian treatment of the state-of-the-art filtering, smoothing, and parameter estimation algorithms for non-linear state space models.

Bayesian Reasoning and Machine Learning

Download Bayesian Reasoning and Machine Learning PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 0521518148
Total Pages : 739 pages
Book Rating : 4.5/5 (215 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Reasoning and Machine Learning by : David Barber

Download or read book Bayesian Reasoning and Machine Learning written by David Barber and published by Cambridge University Press. This book was released on 2012-02-02 with total page 739 pages. Available in PDF, EPUB and Kindle. Book excerpt: A practical introduction perfect for final-year undergraduate and graduate students without a solid background in linear algebra and calculus.

Computational Statistics in Data Science

Download Computational Statistics in Data Science PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119561086
Total Pages : 672 pages
Book Rating : 4.1/5 (195 download)

DOWNLOAD NOW!


Book Synopsis Computational Statistics in Data Science by : Richard A. Levine

Download or read book Computational Statistics in Data Science written by Richard A. Levine and published by John Wiley & Sons. This book was released on 2022-03-23 with total page 672 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ein unverzichtbarer Leitfaden bei der Anwendung computergestützter Statistik in der modernen Datenwissenschaft In Computational Statistics in Data Science präsentiert ein Team aus bekannten Mathematikern und Statistikern eine fundierte Zusammenstellung von Konzepten, Theorien, Techniken und Praktiken der computergestützten Statistik für ein Publikum, das auf der Suche nach einem einzigen, umfassenden Referenzwerk für Statistik in der modernen Datenwissenschaft ist. Das Buch enthält etliche Kapitel zu den wesentlichen konkreten Bereichen der computergestützten Statistik, in denen modernste Techniken zeitgemäß und verständlich dargestellt werden. Darüber hinaus bietet Computational Statistics in Data Science einen kostenlosen Zugang zu den fertigen Einträgen im Online-Nachschlagewerk Wiley StatsRef: Statistics Reference Online. Außerdem erhalten die Leserinnen und Leser: * Eine gründliche Einführung in die computergestützte Statistik mit relevanten und verständlichen Informationen für Anwender und Forscher in verschiedenen datenintensiven Bereichen * Umfassende Erläuterungen zu aktuellen Themen in der Statistik, darunter Big Data, Datenstromverarbeitung, quantitative Visualisierung und Deep Learning Das Werk eignet sich perfekt für Forscher und Wissenschaftler sämtlicher Fachbereiche, die Techniken der computergestützten Statistik auf einem gehobenen oder fortgeschrittenen Niveau anwenden müssen. Zudem gehört Computational Statistics in Data Science in das Bücherregal von Wissenschaftlern, die sich mit der Erforschung und Entwicklung von Techniken der computergestützten Statistik und statistischen Grafiken beschäftigen.

Bayesian Essentials with R

Download Bayesian Essentials with R PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461486874
Total Pages : 305 pages
Book Rating : 4.4/5 (614 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Essentials with R by : Jean-Michel Marin

Download or read book Bayesian Essentials with R written by Jean-Michel Marin and published by Springer Science & Business Media. This book was released on 2013-10-28 with total page 305 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Bayesian modeling book provides a self-contained entry to computational Bayesian statistics. Focusing on the most standard statistical models and backed up by real datasets and an all-inclusive R (CRAN) package called bayess, the book provides an operational methodology for conducting Bayesian inference, rather than focusing on its theoretical and philosophical justifications. Readers are empowered to participate in the real-life data analysis situations depicted here from the beginning. Special attention is paid to the derivation of prior distributions in each case and specific reference solutions are given for each of the models. Similarly, computational details are worked out to lead the reader towards an effective programming of the methods given in the book. In particular, all R codes are discussed with enough detail to make them readily understandable and expandable. Bayesian Essentials with R can be used as a textbook at both undergraduate and graduate levels. It is particularly useful with students in professional degree programs and scientists to analyze data the Bayesian way. The text will also enhance introductory courses on Bayesian statistics. Prerequisites for the book are an undergraduate background in probability and statistics, if not in Bayesian statistics.

Doing Meta-Analysis with R

Download Doing Meta-Analysis with R PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000435636
Total Pages : 500 pages
Book Rating : 4.0/5 (4 download)

DOWNLOAD NOW!


Book Synopsis Doing Meta-Analysis with R by : Mathias Harrer

Download or read book Doing Meta-Analysis with R written by Mathias Harrer and published by CRC Press. This book was released on 2021-09-15 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: Doing Meta-Analysis with R: A Hands-On Guide serves as an accessible introduction on how meta-analyses can be conducted in R. Essential steps for meta-analysis are covered, including calculation and pooling of outcome measures, forest plots, heterogeneity diagnostics, subgroup analyses, meta-regression, methods to control for publication bias, risk of bias assessments and plotting tools. Advanced but highly relevant topics such as network meta-analysis, multi-three-level meta-analyses, Bayesian meta-analysis approaches and SEM meta-analysis are also covered. A companion R package, dmetar, is introduced at the beginning of the guide. It contains data sets and several helper functions for the meta and metafor package used in the guide. The programming and statistical background covered in the book are kept at a non-expert level, making the book widely accessible. Features • Contains two introductory chapters on how to set up an R environment and do basic imports/manipulations of meta-analysis data, including exercises • Describes statistical concepts clearly and concisely before applying them in R • Includes step-by-step guidance through the coding required to perform meta-analyses, and a companion R package for the book

Information Theory, Inference and Learning Algorithms

Download Information Theory, Inference and Learning Algorithms PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521642989
Total Pages : 694 pages
Book Rating : 4.6/5 (429 download)

DOWNLOAD NOW!


Book Synopsis Information Theory, Inference and Learning Algorithms by : David J. C. MacKay

Download or read book Information Theory, Inference and Learning Algorithms written by David J. C. MacKay and published by Cambridge University Press. This book was released on 2003-09-25 with total page 694 pages. Available in PDF, EPUB and Kindle. Book excerpt: Information theory and inference, taught together in this exciting textbook, lie at the heart of many important areas of modern technology - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics and cryptography. The book introduces theory in tandem with applications. Information theory is taught alongside practical communication systems such as arithmetic coding for data compression and sparse-graph codes for error-correction. Inference techniques, including message-passing algorithms, Monte Carlo methods and variational approximations, are developed alongside applications to clustering, convolutional codes, independent component analysis, and neural networks. Uniquely, the book covers state-of-the-art error-correcting codes, including low-density-parity-check codes, turbo codes, and digital fountain codes - the twenty-first-century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, the book is ideal for self-learning, and for undergraduate or graduate courses. It also provides an unparalleled entry point for professionals in areas as diverse as computational biology, financial engineering and machine learning.

Empirical Likelihood

Download Empirical Likelihood PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1420036157
Total Pages : 322 pages
Book Rating : 4.4/5 (2 download)

DOWNLOAD NOW!


Book Synopsis Empirical Likelihood by : Art B. Owen

Download or read book Empirical Likelihood written by Art B. Owen and published by CRC Press. This book was released on 2001-05-18 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Empirical likelihood provides inferences whose validity does not depend on specifying a parametric model for the data. Because it uses a likelihood, the method has certain inherent advantages over resampling methods: it uses the data to determine the shape of the confidence regions, and it makes it easy to combined data from multiple sources. It al