Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Graphs Of Groups On Surfaces
Download Graphs Of Groups On Surfaces full books in PDF, epub, and Kindle. Read online Graphs Of Groups On Surfaces ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Graphs, Groups and Surfaces by : A.T. White
Download or read book Graphs, Groups and Surfaces written by A.T. White and published by Elsevier. This book was released on 1985-01-01 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of topological graph theory has expanded greatly in the ten years since the first edition of this book appeared. The original nine chapters of this classic work have therefore been revised and updated. Six new chapters have been added, dealing with: voltage graphs, non-orientable imbeddings, block designs associated with graph imbeddings, hypergraph imbeddings, map automorphism groups and change ringing.Thirty-two new problems have been added to this new edition, so that there are now 181 in all; 22 of these have been designated as ``difficult'' and 9 as ``unsolved''. Three of the four unsolved problems from the first edition have been solved in the ten years between editions; they are now marked as ``difficult''.
Book Synopsis Graphs of Groups on Surfaces by : A.T. White
Download or read book Graphs of Groups on Surfaces written by A.T. White and published by Elsevier. This book was released on 2001-04-27 with total page 379 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book, suitable as both an introductory reference and as a text book in the rapidly growing field of topological graph theory, models both maps (as in map-coloring problems) and groups by means of graph imbeddings on sufaces. Automorphism groups of both graphs and maps are studied. In addition connections are made to other areas of mathematics, such as hypergraphs, block designs, finite geometries, and finite fields. There are chapters on the emerging subfields of enumerative topological graph theory and random topological graph theory, as well as a chapter on the composition of English church-bell music. The latter is facilitated by imbedding the right graph of the right group on an appropriate surface, with suitable symmetries. Throughout the emphasis is on Cayley maps: imbeddings of Cayley graphs for finite groups as (possibly branched) covering projections of surface imbeddings of loop graphs with one vertex. This is not as restrictive as it might sound; many developments in topological graph theory involve such imbeddings.The approach aims to make all this interconnected material readily accessible to a beginning graduate (or an advanced undergraduate) student, while at the same time providing the research mathematician with a useful reference book in topological graph theory. The focus will be on beautiful connections, both elementary and deep, within mathematics that can best be described by the intuitively pleasing device of imbedding graphs of groups on surfaces.
Author :Joanna A. Ellis-Monaghan Publisher :Springer Science & Business Media ISBN 13 :1461469716 Total Pages :149 pages Book Rating :4.4/5 (614 download)
Book Synopsis Graphs on Surfaces by : Joanna A. Ellis-Monaghan
Download or read book Graphs on Surfaces written by Joanna A. Ellis-Monaghan and published by Springer Science & Business Media. This book was released on 2013-06-28 with total page 149 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graphs on Surfaces: Dualities, Polynomials, and Knots offers an accessible and comprehensive treatment of recent developments on generalized duals of graphs on surfaces, and their applications. The authors illustrate the interdependency between duality, medial graphs and knots; how this interdependency is reflected in algebraic invariants of graphs and knots; and how it can be exploited to solve problems in graph and knot theory. Taking a constructive approach, the authors emphasize how generalized duals and related ideas arise by localizing classical constructions, such as geometric duals and Tait graphs, and then removing artificial restrictions in these constructions to obtain full extensions of them to embedded graphs. The authors demonstrate the benefits of these generalizations to embedded graphs in chapters describing their applications to graph polynomials and knots. Graphs on Surfaces: Dualities, Polynomials, and Knots also provides a self-contained introduction to graphs on surfaces, generalized duals, topological graph polynomials, and knot polynomials that is accessible both to graph theorists and to knot theorists. Directed at those with some familiarity with basic graph theory and knot theory, this book is appropriate for graduate students and researchers in either area. Because the area is advancing so rapidly, the authors give a comprehensive overview of the topic and include a robust bibliography, aiming to provide the reader with the necessary foundations to stay abreast of the field. The reader will come away from the text convinced of advantages of considering these higher genus analogues of constructions of plane and abstract graphs, and with a good understanding of how they arise.
Book Synopsis Graphs on Surfaces and Their Applications by : Sergei K. Lando
Download or read book Graphs on Surfaces and Their Applications written by Sergei K. Lando and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 463 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graphs drawn on two-dimensional surfaces have always attracted researchers by their beauty and by the variety of difficult questions to which they give rise. The theory of such embedded graphs, which long seemed rather isolated, has witnessed the appearance of entirely unexpected new applications in recent decades, ranging from Galois theory to quantum gravity models, and has become a kind of a focus of a vast field of research. The book provides an accessible introduction to this new domain, including such topics as coverings of Riemann surfaces, the Galois group action on embedded graphs (Grothendieck's theory of "dessins d'enfants"), the matrix integral method, moduli spaces of curves, the topology of meromorphic functions, and combinatorial aspects of Vassiliev's knot invariants and, in an appendix by Don Zagier, the use of finite group representation theory. The presentation is concrete throughout, with numerous figures, examples (including computer calculations) and exercises, and should appeal to both graduate students and researchers.
Book Synopsis Graphs, Surfaces and Homology by : Peter Giblin
Download or read book Graphs, Surfaces and Homology written by Peter Giblin and published by Cambridge University Press. This book was released on 2010-08-12 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: Homology theory is a powerful algebraic tool that is at the centre of current research in topology and its applications. This accessible textbook will appeal to mathematics students interested in the application of algebra to geometrical problems, specifically the study of surfaces (sphere, torus, Mobius band, Klein bottle). In this introduction to simplicial homology - the most easily digested version of homology theory - the author studies interesting geometrical problems, such as the structure of two-dimensional surfaces and the embedding of graphs in surfaces, using the minimum of algebraic machinery and including a version of Lefschetz duality. Assuming very little mathematical knowledge, the book provides a complete account of the algebra needed (abelian groups and presentations), and the development of the material is always carefully explained with proofs given in full detail. Numerous examples and exercises are also included, making this an ideal text for undergraduate courses or for self-study.
Book Synopsis Groups Acting on Graphs by : Warren Dicks
Download or read book Groups Acting on Graphs written by Warren Dicks and published by Cambridge University Press. This book was released on 1989-03-09 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: Originally published in 1989, this is an advanced text and research monograph on groups acting on low-dimensional topological spaces, and for the most part the viewpoint is algebraic. Much of the book occurs at the one-dimensional level, where the topology becomes graph theory. Two-dimensional topics include the characterization of Poincare duality groups and accessibility of almost finitely presented groups. The main three-dimensional topics are the equivariant loop and sphere theorems. The prerequisites grow as the book progresses up the dimensions. A familiarity with group theory is sufficient background for at least the first third of the book, while the later chapters occasionally state without proof and then apply various facts which require knowledge of homological algebra and algebraic topology. This book is essential reading for anyone contemplating working in the subject.
Book Synopsis Topics in Topological Graph Theory by : Lowell W. Beineke
Download or read book Topics in Topological Graph Theory written by Lowell W. Beineke and published by Cambridge University Press. This book was released on 2009-07-09 with total page 387 pages. Available in PDF, EPUB and Kindle. Book excerpt: The use of topological ideas to explore various aspects of graph theory, and vice versa, is a fruitful area of research. There are links with other areas of mathematics, such as design theory and geometry, and increasingly with such areas as computer networks where symmetry is an important feature. Other books cover portions of the material here, but there are no other books with such a wide scope. This book contains fifteen expository chapters written by acknowledged international experts in the field. Their well-written contributions have been carefully edited to enhance readability and to standardize the chapter structure, terminology and notation throughout the book. To help the reader, there is an extensive introductory chapter that covers the basic background material in graph theory and the topology of surfaces. Each chapter concludes with an extensive list of references.
Book Synopsis Configurations from a Graphical Viewpoint by : Tomaz Pisanski
Download or read book Configurations from a Graphical Viewpoint written by Tomaz Pisanski and published by Springer Science & Business Media. This book was released on 2013 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: Configurations can be studied from a graph-theoretical viewpoint via the so-called Levi graphs and lie at the heart of graphs, groups, surfaces, and geometries, all of which are very active areas of mathematical exploration. In this self-contained textbook, algebraic graph theory is used to introduce groups; topological graph theory is used to explore surfaces; and geometric graph theory is implemented to analyze incidence geometries. After a preview of configurations in Chapter 1, a concise introduction to graph theory is presented in Chapter 2, followed by a geometric introduction to groups in Chapter 3. Maps and surfaces are combinatorially treated in Chapter 4. Chapter 5 introduces the concept of incidence structure through vertex colored graphs, and the combinatorial aspects of classical configurations are studied. Geometric aspects, some historical remarks, references, and applications of classical configurations appear in the last chapter. With over two hundred illustrations, challenging exercises at the end of each chapter, a comprehensive bibliography, and a set of open problems, Configurations from a Graphical Viewpoint is well suited for a graduate graph theory course, an advanced undergraduate seminar, or a self-contained reference for mathematicians and researchers.
Download or read book Graphs on Surfaces written by Bojan Mohar and published by Johns Hopkins University Press. This book was released on 2001-08-02 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graph theory is one of the fastest growing branches of mathematics. Until recently, it was regarded as a branch of combinatorics and was best known by the famous four-color theorem stating that any map can be colored using only four colors such that no two bordering countries have the same color. Now graph theory is an area of its own with many deep results and beautiful open problems. Graph theory has numerous applications in almost every field of science and has attracted new interest because of its relevance to such technological problems as computer and telephone networking and, of course, the internet. In this new book in the Johns Hopkins Studies in the Mathematical Science series, Bojan Mohar and Carsten Thomassen look at a relatively new area of graph theory: that associated with curved surfaces. Graphs on surfaces form a natural link between discrete and continuous mathematics. The book provides a rigorous and concise introduction to graphs on surfaces and surveys some of the recent developments in this area. Among the basic results discussed are Kuratowski's theorem and other planarity criteria, the Jordan Curve Theorem and some of its extensions, the classification of surfaces, and the Heffter-Edmonds-Ringel rotation principle, which makes it possible to treat graphs on surfaces in a purely combinatorial way. The genus of a graph, contractability of cycles, edge-width, and face-width are treated purely combinatorially, and several results related to these concepts are included. The extension by Robertson and Seymour of Kuratowski's theorem to higher surfaces is discussed in detail, and a shorter proof is presented. The book concludes with a survey of recent developments on coloring graphs on surfaces.
Book Synopsis Random Walks on Infinite Graphs and Groups by : Wolfgang Woess
Download or read book Random Walks on Infinite Graphs and Groups written by Wolfgang Woess and published by Cambridge University Press. This book was released on 2000-02-13 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main theme of this book is the interplay between the behaviour of a class of stochastic processes (random walks) and discrete structure theory. The author considers Markov chains whose state space is equipped with the structure of an infinite, locally finite graph, or as a particular case, of a finitely generated group. The transition probabilities are assumed to be adapted to the underlying structure in some way that must be specified precisely in each case. From the probabilistic viewpoint, the question is what impact the particular type of structure has on various aspects of the behaviour of the random walk. Vice-versa, random walks may also be seen as useful tools for classifying, or at least describing the structure of graphs and groups. Links with spectral theory and discrete potential theory are also discussed. This book will be essential reading for all researchers working in stochastic process and related topics.
Book Synopsis The Foundations of Topological Graph Theory by : C.Paul Bonnington
Download or read book The Foundations of Topological Graph Theory written by C.Paul Bonnington and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 179 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is not a traditional work on topological graph theory. No current graph or voltage graph adorns its pages. Its readers will not compute the genus (orientable or non-orientable) of a single non-planar graph. Their muscles will not flex under the strain of lifting walks from base graphs to derived graphs. What is it, then? It is an attempt to place topological graph theory on a purely combinatorial yet rigorous footing. The vehicle chosen for this purpose is the con cept of a 3-graph, which is a combinatorial generalisation of an imbedding. These properly edge-coloured cubic graphs are used to classify surfaces, to generalise the Jordan curve theorem, and to prove Mac Lane's characterisation of planar graphs. Thus they playa central role in this book, but it is not being suggested that they are necessarily the most effective tool in areas of topological graph theory not dealt with in this volume. Fruitful though 3-graphs have been for our investigations, other jewels must be examined with a different lens. The sole requirement for understanding the logical development in this book is some elementary knowledge of vector spaces over the field Z2 of residue classes modulo 2. Groups are occasionally mentioned, but no expertise in group theory is required. The treatment will be appreciated best, however, by readers acquainted with topology. A modicum of topology is required in order to comprehend much of the motivation we supply for some of the concepts introduced.
Book Synopsis Topological Theory of Graphs by : Yanpei Liu
Download or read book Topological Theory of Graphs written by Yanpei Liu and published by Walter de Gruyter GmbH & Co KG. This book was released on 2017-03-06 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a topological approach to combinatorial configurations, in particular graphs, by introducing a new pair of homology and cohomology via polyhedra. On this basis, a number of problems are solved using a new approach, such as the embeddability of a graph on a surface (orientable and nonorientable) with given genus, the Gauss crossing conjecture, the graphicness and cographicness of a matroid, and so forth. Notably, the specific case of embeddability on a surface of genus zero leads to a number of corollaries, including the theorems of Lefschetz (on double coverings), of MacLane (on cycle bases), and of Whitney (on duality) for planarity. Relevant problems include the Jordan axiom in polyhedral forms, efficient methods for extremality and for recognizing a variety of embeddings (including rectilinear layouts in VLSI), and pan-polynomials, including those of Jones, Kauffman (on knots), and Tutte (on graphs), among others. Contents Preliminaries Polyhedra Surfaces Homology on Polyhedra Polyhedra on the Sphere Automorphisms of a Polyhedron Gauss Crossing Sequences Cohomology on Graphs Embeddability on Surfaces Embeddings on Sphere Orthogonality on Surfaces Net Embeddings Extremality on Surfaces Matroidal Graphicness Knot Polynomials
Book Synopsis Graph Theory and Its Applications, Second Edition by : Jonathan L. Gross
Download or read book Graph Theory and Its Applications, Second Edition written by Jonathan L. Gross and published by CRC Press. This book was released on 2005-09-22 with total page 799 pages. Available in PDF, EPUB and Kindle. Book excerpt: Already an international bestseller, with the release of this greatly enhanced second edition, Graph Theory and Its Applications is now an even better choice as a textbook for a variety of courses -- a textbook that will continue to serve your students as a reference for years to come. The superior explanations, broad coverage, and abundance of illustrations and exercises that positioned this as the premier graph theory text remain, but are now augmented by a broad range of improvements. Nearly 200 pages have been added for this edition, including nine new sections and hundreds of new exercises, mostly non-routine. What else is new? New chapters on measurement and analytic graph theory Supplementary exercises in each chapter - ideal for reinforcing, reviewing, and testing. Solutions and hints, often illustrated with figures, to selected exercises - nearly 50 pages worth Reorganization and extensive revisions in more than half of the existing chapters for smoother flow of the exposition Foreshadowing - the first three chapters now preview a number of concepts, mostly via the exercises, to pique the interest of reader Gross and Yellen take a comprehensive approach to graph theory that integrates careful exposition of classical developments with emerging methods, models, and practical needs. Their unparalleled treatment provides a text ideal for a two-semester course and a variety of one-semester classes, from an introductory one-semester course to courses slanted toward classical graph theory, operations research, data structures and algorithms, or algebra and topology.
Book Synopsis Modern Graph Theory by : Bela Bollobas
Download or read book Modern Graph Theory written by Bela Bollobas and published by Springer Science & Business Media. This book was released on 2013-12-01 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: An in-depth account of graph theory, written for serious students of mathematics and computer science. It reflects the current state of the subject and emphasises connections with other branches of pure mathematics. Recognising that graph theory is one of several courses competing for the attention of a student, the book contains extensive descriptive passages designed to convey the flavour of the subject and to arouse interest. In addition to a modern treatment of the classical areas of graph theory, the book presents a detailed account of newer topics, including Szemerédis Regularity Lemma and its use, Shelahs extension of the Hales-Jewett Theorem, the precise nature of the phase transition in a random graph process, the connection between electrical networks and random walks on graphs, and the Tutte polynomial and its cousins in knot theory. Moreover, the book contains over 600 well thought-out exercises: although some are straightforward, most are substantial, and some will stretch even the most able reader.
Book Synopsis A Primer on Mapping Class Groups by : Benson Farb
Download or read book A Primer on Mapping Class Groups written by Benson Farb and published by Princeton University Press. This book was released on 2012 with total page 490 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of the mapping class group Mod(S) is a classical topic that is experiencing a renaissance. It lies at the juncture of geometry, topology, and group theory. This book explains as many important theorems, examples, and techniques as possible, quickly and directly, while at the same time giving full details and keeping the text nearly self-contained. The book is suitable for graduate students. A Primer on Mapping Class Groups begins by explaining the main group-theoretical properties of Mod(S), from finite generation by Dehn twists and low-dimensional homology to the Dehn-Nielsen-Baer theorem. Along the way, central objects and tools are introduced, such as the Birman exact sequence, the complex of curves, the braid group, the symplectic representation, and the Torelli group. The book then introduces Teichmüller space and its geometry, and uses the action of Mod(S) on it to prove the Nielsen-Thurston classification of surface homeomorphisms. Topics include the topology of the moduli space of Riemann surfaces, the connection with surface bundles, pseudo-Anosov theory, and Thurston's approach to the classification.
Book Synopsis Algebraic Graph Theory by : Ulrich Knauer
Download or read book Algebraic Graph Theory written by Ulrich Knauer and published by Walter de Gruyter GmbH & Co KG. This book was released on 2019-10-08 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graph models are extremely useful for a large number of applications as they play an important role as structuring tools. They allow to model net structures – like roads, computers, telephones, social networks – instances of abstract data structures – like lists, stacks, trees – and functional or object oriented programming. The focus of this highly self-contained book is on homomorphisms and endomorphisms, matrices and eigenvalues.
Book Synopsis Knots and Surfaces by : N. D. Gilbert
Download or read book Knots and Surfaces written by N. D. Gilbert and published by Oxford University Press, UK. This book was released on 1994-12-01 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt: Completely up-to-date, illustrated throughout, and written in an accessible style, Knots and Surfaces is an account of the mathematical theory of knots and its interaction with related fields. This is an area of intense research activity, and this text provides the advanced undergraduate with a superb introduction to this exciting field. Beginning with a simple diagrammatic approach, the book proceeds through recent advances to areas of current research. Topics including topological spaces, surfaces, the fundamental group, graphs, free groups, and group presentations combine to form a coherent and highly developed theory with which to explore and explain the accessible and intuitive problems of knots and surfaces. - ;The main theme of this book is the mathematical theory of knots and its interaction with the theory of surfaces and of group presentations. Beginning with a simple diagrammatic approach to the study of knots, reflecting the artistic and geometric appeal of interlaced forms, Knots and Surfaces takes the reader through recent advances in our understanding to areas of current research. Topics included are straightforward introductions to topological spaces, surfaces, the fundamental group, graphs, free groups, and group presentations. These topics combine into a coherent and highly developed theory to explore and explain the accessible and intuitive problems of knots and surfaces. Both as an introduction to several areas of prime importance to the development of pure mathematics today, and as an account of pure mathematics in action in an unusual context, this book presents novel challenges to students and other interested readers. -