Geometric Integrators for Differential Equations with Highly Oscillatory Solutions

Download Geometric Integrators for Differential Equations with Highly Oscillatory Solutions PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 981160147X
Total Pages : 507 pages
Book Rating : 4.8/5 (116 download)

DOWNLOAD NOW!


Book Synopsis Geometric Integrators for Differential Equations with Highly Oscillatory Solutions by : Xinyuan Wu

Download or read book Geometric Integrators for Differential Equations with Highly Oscillatory Solutions written by Xinyuan Wu and published by Springer Nature. This book was released on 2021-09-28 with total page 507 pages. Available in PDF, EPUB and Kindle. Book excerpt: The idea of structure-preserving algorithms appeared in the 1980's. The new paradigm brought many innovative changes. The new paradigm wanted to identify the long-time behaviour of the solutions or the existence of conservation laws or some other qualitative feature of the dynamics. Another area that has kept growing in importance within Geometric Numerical Integration is the study of highly-oscillatory problems: problems where the solutions are periodic or quasiperiodic and have to be studied in time intervals that include an extremely large number of periods. As is known, these equations cannot be solved efficiently using conventional methods. A further study of novel geometric integrators has become increasingly important in recent years. The objective of this monograph is to explore further geometric integrators for highly oscillatory problems that can be formulated as systems of ordinary and partial differential equations. Facing challenging scientific computational problems, this book presents some new perspectives of the subject matter based on theoretical derivations and mathematical analysis, and provides high-performance numerical simulations. In order to show the long-time numerical behaviour of the simulation, all the integrators presented in this monograph have been tested and verified on highly oscillatory systems from a wide range of applications in the field of science and engineering. They are more efficient than existing schemes in the literature for differential equations that have highly oscillatory solutions. This book is useful to researchers, teachers, students and engineers who are interested in Geometric Integrators and their long-time behaviour analysis for differential equations with highly oscillatory solutions.

Geometric Numerical Integration

Download Geometric Numerical Integration PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3662050188
Total Pages : 526 pages
Book Rating : 4.6/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Geometric Numerical Integration by : Ernst Hairer

Download or read book Geometric Numerical Integration written by Ernst Hairer and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 526 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with numerical methods that preserve properties of Hamiltonian systems, reversible systems, differential equations on manifolds and problems with highly oscillatory solutions. A complete self-contained theory of symplectic and symmetric methods, which include Runge-Kutta, composition, splitting, multistep and various specially designed integrators, is presented and their construction and practical merits are discussed. The long-time behaviour of the numerical solutions is studied using a backward error analysis (modified equations) combined with KAM theory. The book is illustrated by numerous figures, treats applications from physics and astronomy, and contains many numerical experiments and comparisons of different approaches.

Simulating Hamiltonian Dynamics

Download Simulating Hamiltonian Dynamics PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521772907
Total Pages : 464 pages
Book Rating : 4.7/5 (729 download)

DOWNLOAD NOW!


Book Synopsis Simulating Hamiltonian Dynamics by : Benedict Leimkuhler

Download or read book Simulating Hamiltonian Dynamics written by Benedict Leimkuhler and published by Cambridge University Press. This book was released on 2004 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geometric integrators are time-stepping methods, designed such that they exactly satisfy conservation laws, symmetries or symplectic properties of a system of differential equations. In this book the authors outline the principles of geometric integration and demonstrate how they can be applied to provide efficient numerical methods for simulating conservative models. Beginning from basic principles and continuing with discussions regarding the advantageous properties of such schemes, the book introduces methods for the N-body problem, systems with holonomic constraints, and rigid bodies. More advanced topics treated include high-order and variable stepsize methods, schemes for treating problems involving multiple time-scales, and applications to molecular dynamics and partial differential equations. The emphasis is on providing a unified theoretical framework as well as a practical guide for users. The inclusion of examples, background material and exercises enhance the usefulness of the book for self-instruction or as a text for a graduate course on the subject.

Download  PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031743792
Total Pages : 494 pages
Book Rating : 4.0/5 (317 download)

DOWNLOAD NOW!


Book Synopsis by :

Download or read book written by and published by Springer Nature. This book was released on with total page 494 pages. Available in PDF, EPUB and Kindle. Book excerpt:

A First Course in the Numerical Analysis of Differential Equations

Download A First Course in the Numerical Analysis of Differential Equations PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 0521734908
Total Pages : 481 pages
Book Rating : 4.5/5 (217 download)

DOWNLOAD NOW!


Book Synopsis A First Course in the Numerical Analysis of Differential Equations by : A. Iserles

Download or read book A First Course in the Numerical Analysis of Differential Equations written by A. Iserles and published by Cambridge University Press. This book was released on 2009 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: lead the reader to a theoretical understanding of the subject without neglecting its practical aspects. The outcome is a textbook that is mathematically honest and rigorous and provides its target audience with a wide range of skills in both ordinary and partial differential equations." --Book Jacket.

Recent Developments in Structure-Preserving Algorithms for Oscillatory Differential Equations

Download Recent Developments in Structure-Preserving Algorithms for Oscillatory Differential Equations PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9811090041
Total Pages : 356 pages
Book Rating : 4.8/5 (11 download)

DOWNLOAD NOW!


Book Synopsis Recent Developments in Structure-Preserving Algorithms for Oscillatory Differential Equations by : Xinyuan Wu

Download or read book Recent Developments in Structure-Preserving Algorithms for Oscillatory Differential Equations written by Xinyuan Wu and published by Springer. This book was released on 2018-04-19 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main theme of this book is recent progress in structure-preserving algorithms for solving initial value problems of oscillatory differential equations arising in a variety of research areas, such as astronomy, theoretical physics, electronics, quantum mechanics and engineering. It systematically describes the latest advances in the development of structure-preserving integrators for oscillatory differential equations, such as structure-preserving exponential integrators, functionally fitted energy-preserving integrators, exponential Fourier collocation methods, trigonometric collocation methods, and symmetric and arbitrarily high-order time-stepping methods. Most of the material presented here is drawn from the recent literature. Theoretical analysis of the newly developed schemes shows their advantages in the context of structure preservation. All the new methods introduced in this book are proven to be highly effective compared with the well-known codes in the scientific literature. This book also addresses challenging problems at the forefront of modern numerical analysis and presents a wide range of modern tools and techniques.

Discrete Mechanics, Geometric Integration and Lie–Butcher Series

Download Discrete Mechanics, Geometric Integration and Lie–Butcher Series PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3030013979
Total Pages : 366 pages
Book Rating : 4.0/5 (3 download)

DOWNLOAD NOW!


Book Synopsis Discrete Mechanics, Geometric Integration and Lie–Butcher Series by : Kurusch Ebrahimi-Fard

Download or read book Discrete Mechanics, Geometric Integration and Lie–Butcher Series written by Kurusch Ebrahimi-Fard and published by Springer. This book was released on 2018-11-05 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume resulted from presentations given at the international “Brainstorming Workshop on New Developments in Discrete Mechanics, Geometric Integration and Lie–Butcher Series”, that took place at the Instituto de Ciencias Matemáticas (ICMAT) in Madrid, Spain. It combines overview and research articles on recent and ongoing developments, as well as new research directions. Why geometric numerical integration? In their article of the same title Arieh Iserles and Reinout Quispel, two renowned experts in numerical analysis of differential equations, provide a compelling answer to this question. After this introductory chapter a collection of high-quality research articles aim at exploring recent and ongoing developments, as well as new research directions in the areas of geometric integration methods for differential equations, nonlinear systems interconnections, and discrete mechanics. One of the highlights is the unfolding of modern algebraic and combinatorial structures common to those topics, which give rise to fruitful interactions between theoretical as well as applied and computational perspectives. The volume is aimed at researchers and graduate students interested in theoretical and computational problems in geometric integration theory, nonlinear control theory, and discrete mechanics.

Structure-Preserving Algorithms for Oscillatory Differential Equations II

Download Structure-Preserving Algorithms for Oscillatory Differential Equations II PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3662481561
Total Pages : 305 pages
Book Rating : 4.6/5 (624 download)

DOWNLOAD NOW!


Book Synopsis Structure-Preserving Algorithms for Oscillatory Differential Equations II by : Xinyuan Wu

Download or read book Structure-Preserving Algorithms for Oscillatory Differential Equations II written by Xinyuan Wu and published by Springer. This book was released on 2016-03-03 with total page 305 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes a variety of highly effective and efficient structure-preserving algorithms for second-order oscillatory differential equations. Such systems arise in many branches of science and engineering, and the examples in the book include systems from quantum physics, celestial mechanics and electronics. To accurately simulate the true behavior of such systems, a numerical algorithm must preserve as much as possible their key structural properties: time-reversibility, oscillation, symplecticity, and energy and momentum conservation. The book describes novel advances in RKN methods, ERKN methods, Filon-type asymptotic methods, AVF methods, and trigonometric Fourier collocation methods. The accuracy and efficiency of each of these algorithms are tested via careful numerical simulations, and their structure-preserving properties are rigorously established by theoretical analysis. The book also gives insights into the practical implementation of the methods. This book is intended for engineers and scientists investigating oscillatory systems, as well as for teachers and students who are interested in structure-preserving algorithms for differential equations.

A Concise Introduction to Geometric Numerical Integration

Download A Concise Introduction to Geometric Numerical Integration PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1315354861
Total Pages : 287 pages
Book Rating : 4.3/5 (153 download)

DOWNLOAD NOW!


Book Synopsis A Concise Introduction to Geometric Numerical Integration by : Sergio Blanes

Download or read book A Concise Introduction to Geometric Numerical Integration written by Sergio Blanes and published by CRC Press. This book was released on 2017-11-22 with total page 287 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover How Geometric Integrators Preserve the Main Qualitative Properties of Continuous Dynamical Systems A Concise Introduction to Geometric Numerical Integration presents the main themes, techniques, and applications of geometric integrators for researchers in mathematics, physics, astronomy, and chemistry who are already familiar with numerical tools for solving differential equations. It also offers a bridge from traditional training in the numerical analysis of differential equations to understanding recent, advanced research literature on numerical geometric integration. The book first examines high-order classical integration methods from the structure preservation point of view. It then illustrates how to construct high-order integrators via the composition of basic low-order methods and analyzes the idea of splitting. It next reviews symplectic integrators constructed directly from the theory of generating functions as well as the important category of variational integrators. The authors also explain the relationship between the preservation of the geometric properties of a numerical method and the observed favorable error propagation in long-time integration. The book concludes with an analysis of the applicability of splitting and composition methods to certain classes of partial differential equations, such as the Schrödinger equation and other evolution equations. The motivation of geometric numerical integration is not only to develop numerical methods with improved qualitative behavior but also to provide more accurate long-time integration results than those obtained by general-purpose algorithms. Accessible to researchers and post-graduate students from diverse backgrounds, this introductory book gets readers up to speed on the ideas, methods, and applications of this field. Readers can reproduce the figures and results given in the text using the MATLAB® programs and model files available online.

Highly Oscillatory Problems

Download Highly Oscillatory Problems PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 0521134439
Total Pages : 254 pages
Book Rating : 4.5/5 (211 download)

DOWNLOAD NOW!


Book Synopsis Highly Oscillatory Problems by : Bjorn Engquist

Download or read book Highly Oscillatory Problems written by Bjorn Engquist and published by Cambridge University Press. This book was released on 2009-07-02 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: Review papers from experts in areas of active research into highly oscillatory problems, with an emphasis on computation.

Geometric Mechanics and Its Applications

Download Geometric Mechanics and Its Applications PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9811974357
Total Pages : 540 pages
Book Rating : 4.8/5 (119 download)

DOWNLOAD NOW!


Book Synopsis Geometric Mechanics and Its Applications by : Weipeng Hu

Download or read book Geometric Mechanics and Its Applications written by Weipeng Hu and published by Springer Nature. This book was released on 2023-01-01 with total page 540 pages. Available in PDF, EPUB and Kindle. Book excerpt: To make the content of the book more systematic, this book mainly briefs some related basic knowledge reported by other monographs and papers about geometric mechanics. The main content of this book is based on the last 20 years’ jobs of the authors. All physical processes can be formulated as the Hamiltonian form with the energy conservation law as well as the symplectic structure if all dissipative effects are ignored. On the one hand, the important status of the Hamiltonian mechanics is emphasized. On the other hand, a higher requirement is proposed for the numerical analysis on the Hamiltonian system, namely the results of the numerical analysis on the Hamiltonian system should reproduce the geometric properties of which, including the first integral, the symplectic structure as well as the energy conservation law.

Computing Highly Oscillatory Integrals

Download Computing Highly Oscillatory Integrals PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 1611975123
Total Pages : 207 pages
Book Rating : 4.6/5 (119 download)

DOWNLOAD NOW!


Book Synopsis Computing Highly Oscillatory Integrals by : Alfredo Deano

Download or read book Computing Highly Oscillatory Integrals written by Alfredo Deano and published by SIAM. This book was released on 2018-01-01 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: Highly oscillatory phenomena range across numerous areas in science and engineering and their computation represents a difficult challenge. A case in point is integrals of rapidly oscillating functions in one or more variables. The quadrature of such integrals has been historically considered very demanding. Research in the past 15 years (in which the authors played a major role) resulted in a range of very effective and affordable algorithms for highly oscillatory quadrature. This is the only monograph bringing together the new body of ideas in this area in its entirety. The starting point is that approximations need to be analyzed using asymptotic methods rather than by more standard polynomial expansions. As often happens in computational mathematics, once a phenomenon is understood from a mathematical standpoint, effective algorithms follow. As reviewed in this monograph, we now have at our disposal a number of very effective quadrature methods for highly oscillatory integrals--Filon-type and Levin-type methods, methods based on steepest descent, and complex-valued Gaussian quadrature. Their understanding calls for a fairly varied mathematical toolbox--from classical numerical analysis, approximation theory, and theory of orthogonal polynomials all the way to asymptotic analysis--yet this understanding is the cornerstone of efficient algorithms.

Multiscale Modeling and Simulation in Science

Download Multiscale Modeling and Simulation in Science PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540888578
Total Pages : 332 pages
Book Rating : 4.5/5 (48 download)

DOWNLOAD NOW!


Book Synopsis Multiscale Modeling and Simulation in Science by : Björn Engquist

Download or read book Multiscale Modeling and Simulation in Science written by Björn Engquist and published by Springer Science & Business Media. This book was released on 2009-02-11 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: Most problems in science involve many scales in time and space. An example is turbulent ?ow where the important large scale quantities of lift and drag of a wing depend on the behavior of the small vortices in the boundarylayer. Another example is chemical reactions with concentrations of the species varying over seconds and hours while the time scale of the oscillations of the chemical bonds is of the order of femtoseconds. A third example from structural mechanics is the stress and strain in a solid beam which is well described by macroscopic equations but at the tip of a crack modeling details on a microscale are needed. A common dif?culty with the simulation of these problems and many others in physics, chemistry and biology is that an attempt to represent all scales will lead to an enormous computational problem with unacceptably long computation times and large memory requirements. On the other hand, if the discretization at a coarse level ignoresthe?nescale informationthenthesolutionwillnotbephysicallymeaningful. The in?uence of the ?ne scales must be incorporated into the model. This volume is the result of a Summer School on Multiscale Modeling and S- ulation in Science held at Boso ¤n, Lidingo ¤ outside Stockholm, Sweden, in June 2007. Sixty PhD students from applied mathematics, the sciences and engineering parti- pated in the summer school.

Certified Reduced Basis Methods for Parametrized Partial Differential Equations

Download Certified Reduced Basis Methods for Parametrized Partial Differential Equations PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319224700
Total Pages : 139 pages
Book Rating : 4.3/5 (192 download)

DOWNLOAD NOW!


Book Synopsis Certified Reduced Basis Methods for Parametrized Partial Differential Equations by : Jan S Hesthaven

Download or read book Certified Reduced Basis Methods for Parametrized Partial Differential Equations written by Jan S Hesthaven and published by Springer. This book was released on 2015-08-20 with total page 139 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a thorough introduction to the mathematical and algorithmic aspects of certified reduced basis methods for parametrized partial differential equations. Central aspects ranging from model construction, error estimation and computational efficiency to empirical interpolation methods are discussed in detail for coercive problems. More advanced aspects associated with time-dependent problems, non-compliant and non-coercive problems and applications with geometric variation are also discussed as examples.

Applied Stochastic Differential Equations

Download Applied Stochastic Differential Equations PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1316510085
Total Pages : 327 pages
Book Rating : 4.3/5 (165 download)

DOWNLOAD NOW!


Book Synopsis Applied Stochastic Differential Equations by : Simo Särkkä

Download or read book Applied Stochastic Differential Equations written by Simo Särkkä and published by Cambridge University Press. This book was released on 2019-05-02 with total page 327 pages. Available in PDF, EPUB and Kindle. Book excerpt: With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.

Numerical Mathematics and Advanced Applications

Download Numerical Mathematics and Advanced Applications PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540342885
Total Pages : 1202 pages
Book Rating : 4.5/5 (43 download)

DOWNLOAD NOW!


Book Synopsis Numerical Mathematics and Advanced Applications by : Alfredo Bermúdez de Castro

Download or read book Numerical Mathematics and Advanced Applications written by Alfredo Bermúdez de Castro and published by Springer Science & Business Media. This book was released on 2007-10-08 with total page 1202 pages. Available in PDF, EPUB and Kindle. Book excerpt: These proceedings collect lectures given at ENUMATH 2005, the 6th European Conference on Numerical Mathematics and Advanced Applications held in Santiago de Compostela, Spain in July, 2005. Topics include applications such as fluid dynamics, electromagnetism, structural mechanics, interface problems, waves, finance, heat transfer, unbounded domains, numerical linear algebra, convection-diffusion, as well as methodologies such as a posteriori error estimates, discontinuous Galerkin methods, multiscale methods, optimization, and more.

Geometric Analysis and Nonlinear Partial Differential Equations

Download Geometric Analysis and Nonlinear Partial Differential Equations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642556272
Total Pages : 663 pages
Book Rating : 4.6/5 (425 download)

DOWNLOAD NOW!


Book Synopsis Geometric Analysis and Nonlinear Partial Differential Equations by : Stefan Hildebrandt

Download or read book Geometric Analysis and Nonlinear Partial Differential Equations written by Stefan Hildebrandt and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 663 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is not a textbook, but rather a coherent collection of papers from the field of partial differential equations. Nevertheless we believe that it may very well serve as a good introduction into some topics of this classical field of analysis which, despite of its long history, is highly modem and well prospering. Richard Courant wrote in 1950: "It has always been a temptationfor mathematicians to present the crystallized product of their thought as a deductive general theory and to relegate the individual mathematical phenomenon into the role of an example. The reader who submits to the dogmatic form will be easily indoctrinated. Enlightenment, however, must come from an understanding of motives; live mathematical development springs from specific natural problems which can be easily understood, but whose solutions are difficult and demand new methods or more general significance. " We think that many, if not all, papers of this book are written in this spirit and will give the reader access to an important branch of analysis by exhibiting interest ing problems worth to be studied. Most of the collected articles have an extensive introductory part describing the history of the presented problems as well as the state of the art and offer a well chosen guide to the literature. This way the papers became lengthier than customary these days, but the level of presentation is such that an advanced graduate student should find the various articles both readable and stimulating.