Genomics at the Nexus of AI, Computer Vision, and Machine Learning

Download Genomics at the Nexus of AI, Computer Vision, and Machine Learning PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1394268807
Total Pages : 564 pages
Book Rating : 4.3/5 (942 download)

DOWNLOAD NOW!


Book Synopsis Genomics at the Nexus of AI, Computer Vision, and Machine Learning by : Shilpa Choudhary

Download or read book Genomics at the Nexus of AI, Computer Vision, and Machine Learning written by Shilpa Choudhary and published by John Wiley & Sons. This book was released on 2024-11-05 with total page 564 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides a comprehensive understanding of cutting-edge research and applications at the intersection of genomics and advanced AI techniques and serves as an essential resource for researchers, bioinformaticians, and practitioners looking to leverage genomics data for AI-driven insights and innovations. The book encompasses a wide range of topics, starting with an introduction to genomics data and its unique characteristics. Each chapter unfolds a unique facet, delving into the collaborative potential and challenges that arise from advanced technologies. It explores image analysis techniques specifically tailored for genomic data. It also delves into deep learning showcasing the power of convolutional neural networks (CNN) and recurrent neural networks (RNN) in genomic image analysis and sequence analysis. Readers will gain practical knowledge on how to apply deep learning techniques to unlock patterns and relationships in genomics data. Transfer learning, a popular technique in AI, is explored in the context of genomics, demonstrating how knowledge from pre-trained models can be effectively transferred to genomic datasets, leading to improved performance and efficiency. Also covered is the domain adaptation techniques specifically tailored for genomics data. The book explores how genomics principles can inspire the design of AI algorithms, including genetic algorithms, evolutionary computing, and genetic programming. Additional chapters delve into the interpretation of genomic data using AI and ML models, including techniques for feature importance and visualization, as well as explainable AI methods that aid in understanding the inner workings of the models. The applications of genomics in AI span various domains, and the book explores AI-driven drug discovery and personalized medicine, genomic data analysis for disease diagnosis and prognosis, and the advancement of AI-enabled genomic research. Lastly, the book addresses the ethical considerations in integrating genomics with AI, computer vision, and machine learning. Audience The book will appeal to biomedical and computer/data scientists and researchers working in genomics and bioinformatics seeking to leverage AI, computer vision, and machine learning for enhanced analysis and discovery; healthcare professionals advancing personalized medicine and patient care; industry leaders and decision-makers in biotechnology, pharmaceuticals, and healthcare industries seeking strategic insights into the integration of genomics and advanced technologies.

Deep Learning in Biology and Medicine

Download Deep Learning in Biology and Medicine PDF Online Free

Author :
Publisher : World Scientific Publishing Europe Limited
ISBN 13 : 9781800610934
Total Pages : 0 pages
Book Rating : 4.6/5 (19 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning in Biology and Medicine by : Davide Bacciu

Download or read book Deep Learning in Biology and Medicine written by Davide Bacciu and published by World Scientific Publishing Europe Limited. This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biology, medicine and biochemistry have become data-centric fields for which Deep Learning methods are delivering groundbreaking results. Addressing high impact challenges, Deep Learning in Biology and Medicine provides an accessible and organic collection of Deep Learning essays on bioinformatics and medicine. It caters for a wide readership, ranging from machine learning practitioners and data scientists seeking methodological knowledge to address biomedical applications, to life science specialists in search of a gentle reference for advanced data analytics.With contributions from internationally renowned experts, the book covers foundational methodologies in a wide spectrum of life sciences applications, including electronic health record processing, diagnostic imaging, text processing, as well as omics-data processing. This survey of consolidated problems is complemented by a selection of advanced applications, including cheminformatics and biomedical interaction network analysis. A modern and mindful approach to the use of data-driven methodologies in the life sciences also requires careful consideration of the associated societal, ethical, legal and transparency challenges, which are covered in the concluding chapters of this book.

Deep Learning for Physical Scientists

Download Deep Learning for Physical Scientists PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119408334
Total Pages : 213 pages
Book Rating : 4.1/5 (194 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning for Physical Scientists by : Edward O. Pyzer-Knapp

Download or read book Deep Learning for Physical Scientists written by Edward O. Pyzer-Knapp and published by John Wiley & Sons. This book was released on 2021-09-20 with total page 213 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover the power of machine learning in the physical sciences with this one-stop resource from a leading voice in the field Deep Learning for Physical Scientists: Accelerating Research with Machine Learning delivers an insightful analysis of the transformative techniques being used in deep learning within the physical sciences. The book offers readers the ability to understand, select, and apply the best deep learning techniques for their individual research problem and interpret the outcome. Designed to teach researchers to think in useful new ways about how to achieve results in their research, the book provides scientists with new avenues to attack problems and avoid common pitfalls and problems. Practical case studies and problems are presented, giving readers an opportunity to put what they have learned into practice, with exemplar coding approaches provided to assist the reader. From modelling basics to feed-forward networks, the book offers a broad cross-section of machine learning techniques to improve physical science research. Readers will also enjoy: A thorough introduction to the basic classification and regression with perceptrons An exploration of training algorithms, including back propagation and stochastic gradient descent and the parallelization of training An examination of multi-layer perceptrons for learning from descriptors and de-noising data Discussions of recurrent neural networks for learning from sequences and convolutional neural networks for learning from images A treatment of Bayesian optimization for tuning deep learning architectures Perfect for academic and industrial research professionals in the physical sciences, Deep Learning for Physical Scientists: Accelerating Research with Machine Learning will also earn a place in the libraries of industrial researchers who have access to large amounts of data but have yet to learn the techniques to fully exploit that access. Perfect for academic and industrial research professionals in the physical sciences, em style="font-family: Calibri, sans-serif; font-size: 11pt;"Deep Learning for Physical Scientists: Accelerating Research with Machine Learning will also earn a place in the libraries of industrial researchers who have access to large amounts of data but have yet to learn the techniques to fully exploit that access. This book introduces the reader to the transformative techniques involved in deep learning. A range of methodologies are addressed including: •Basic classification and regression with perceptrons •Training algorithms, such as back propagation and stochastic gradient descent and the parallelization of training •Multi-Layer Perceptrons for learning from descriptors, and de-noising data •Recurrent neural networks for learning from sequences •Convolutional neural networks for learning from images •Bayesian optimization for tuning deep learning architectures Each of these areas has direct application to physical science research, and by the end of the book, the reader should feel comfortable enough to select the methodology which is best for their situation, and be able to implement and interpret outcome of the deep learning model. The book is designed to teach researchers to think in new ways, providing them with new avenues to attack problems, and avoid roadblocks within their research. This is achieved through the inclusion of case-study like problems at the end of each chapter, which will give the reader a chance to practice what they have just learnt in a close-to-real-world setting, with example ‘solutions’ provided through an online resource. Market Description This book introduces the reader to the transformative techniques involved in deep learning. A range of methodologies are addressed including: • Basic classification and regression with perceptrons • Training algorithms, such as back propagation and stochastic gradient descent and the parallelization of training • Multi-Layer Perceptrons for learning from descriptors, and de-noising data • Recurrent neural networks for learning from sequences • Convolutional neural networks for learning from images • Bayesian optimization for tuning deep learning architectures Each of these areas has direct application to physical science research, and by the end of the book, the reader should feel comfortable enough to select the methodology which is best for their situation, and be able to implement and interpret outcome of the deep learning model. The book is designed to teach researchers to think in new ways, providing them with new avenues to attack problems, and avoid roadblocks within their research. This is achieved through the inclusion of case-study like problems at the end of each chapter, which will give the reader a chance to practice what they have just learnt in a close-to-real-world setting, with example ‘solutions’ provided through an online resource.

Machine Learning for Healthcare Applications

Download Machine Learning for Healthcare Applications PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119791812
Total Pages : 418 pages
Book Rating : 4.1/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning for Healthcare Applications by : Sachi Nandan Mohanty

Download or read book Machine Learning for Healthcare Applications written by Sachi Nandan Mohanty and published by John Wiley & Sons. This book was released on 2021-04-13 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: When considering the idea of using machine learning in healthcare, it is a Herculean task to present the entire gamut of information in the field of intelligent systems. It is, therefore the objective of this book to keep the presentation narrow and intensive. This approach is distinct from others in that it presents detailed computer simulations for all models presented with explanations of the program code. It includes unique and distinctive chapters on disease diagnosis, telemedicine, medical imaging, smart health monitoring, social media healthcare, and machine learning for COVID-19. These chapters help develop a clear understanding of the working of an algorithm while strengthening logical thinking. In this environment, answering a single question may require accessing several data sources and calling on sophisticated analysis tools. While data integration is a dynamic research area in the database community, the specific needs of research have led to the development of numerous middleware systems that provide seamless data access in a result-driven environment. Since this book is intended to be useful to a wide audience, students, researchers and scientists from both academia and industry may all benefit from this material. It contains a comprehensive description of issues for healthcare data management and an overview of existing systems, making it appropriate for introductory and instructional purposes. Prerequisites are minimal; the readers are expected to have basic knowledge of machine learning. This book is divided into 22 real-time innovative chapters which provide a variety of application examples in different domains. These chapters illustrate why traditional approaches often fail to meet customers’ needs. The presented approaches provide a comprehensive overview of current technology. Each of these chapters, which are written by the main inventors of the presented systems, specifies requirements and provides a description of both the chosen approach and its implementation. Because of the self-contained nature of these chapters, they may be read in any order. Each of the chapters use various technical terms which involve expertise in machine learning and computer science.

Bioinformatics

Download Bioinformatics PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1584888113
Total Pages : 646 pages
Book Rating : 4.5/5 (848 download)

DOWNLOAD NOW!


Book Synopsis Bioinformatics by : Shui Qing Ye

Download or read book Bioinformatics written by Shui Qing Ye and published by CRC Press. This book was released on 2007-08-20 with total page 646 pages. Available in PDF, EPUB and Kindle. Book excerpt: An emerging, ever-evolving branch of science, bioinformatics has paved the way for the explosive growth in the distribution of biological information to a variety of biological databases, including the National Center for Biotechnology Information. For growth to continue in this field, biologists must obtain basic computer skills while computer spe

A First Course in Machine Learning

Download A First Course in Machine Learning PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1498738540
Total Pages : 428 pages
Book Rating : 4.4/5 (987 download)

DOWNLOAD NOW!


Book Synopsis A First Course in Machine Learning by : Simon Rogers

Download or read book A First Course in Machine Learning written by Simon Rogers and published by CRC Press. This book was released on 2016-10-14 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduces the main algorithms and ideas that underpin machine learning techniques and applications Keeps mathematical prerequisites to a minimum, providing mathematical explanations in comment boxes and highlighting important equations Covers modern machine learning research and techniques Includes three new chapters on Markov Chain Monte Carlo techniques, Classification and Regression with Gaussian Processes, and Dirichlet Process models Offers Python, R, and MATLAB code on accompanying website: http://www.dcs.gla.ac.uk/~srogers/firstcourseml/"

AI

Download AI PDF Online Free

Author :
Publisher :
ISBN 13 : 9781527233454
Total Pages : 235 pages
Book Rating : 4.2/5 (334 download)

DOWNLOAD NOW!


Book Synopsis AI by : Mark Fisher

Download or read book AI written by Mark Fisher and published by . This book was released on 2019 with total page 235 pages. Available in PDF, EPUB and Kindle. Book excerpt: Key features include Margaret Atwood’s essay ‘Are Humans Necessary?’ tracing the history of robots in literature and culture; a fictional piece written by the late cultural theorist Mark Fisher in collaboration co-curator Suzanne Livingston; xenopoet Amy Ireland and computer generated 3D poems/ ‘modules’ that pose a challenge to the limitations of human language and Demis Hassabis, co-founder of Google DeepMind, and professional Go player, Fan Hui, describe how their experience of the Alpha Go program changed their perceptions of human vs artificial intelligence.

Parametric Statistical Change Point Analysis

Download Parametric Statistical Change Point Analysis PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1475731310
Total Pages : 190 pages
Book Rating : 4.4/5 (757 download)

DOWNLOAD NOW!


Book Synopsis Parametric Statistical Change Point Analysis by : Jie Chen

Download or read book Parametric Statistical Change Point Analysis written by Jie Chen and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recently there has been a keen interest in the statistical analysis of change point detec tion and estimation. Mainly, it is because change point problems can be encountered in many disciplines such as economics, finance, medicine, psychology, geology, litera ture, etc. , and even in our daily lives. From the statistical point of view, a change point is a place or time point such that the observations follow one distribution up to that point and follow another distribution after that point. Multiple change points problem can also be defined similarly. So the change point(s) problem is two fold: one is to de cide if there is any change (often viewed as a hypothesis testing problem), another is to locate the change point when there is a change present (often viewed as an estimation problem). The earliest change point study can be traced back to the 1950s. During the fol lowing period of some forty years, numerous articles have been published in various journals and proceedings. Many of them cover the topic of single change point in the means of a sequence of independently normally distributed random variables. Another popularly covered topic is a change point in regression models such as linear regres sion and autoregression. The methods used are mainly likelihood ratio, nonparametric, and Bayesian. Few authors also considered the change point problem in other model settings such as the gamma and exponential.

Bioinformatics Computing

Download Bioinformatics Computing PDF Online Free

Author :
Publisher : Prentice Hall Professional
ISBN 13 : 9780131008250
Total Pages : 472 pages
Book Rating : 4.0/5 (82 download)

DOWNLOAD NOW!


Book Synopsis Bioinformatics Computing by : Bryan P. Bergeron

Download or read book Bioinformatics Computing written by Bryan P. Bergeron and published by Prentice Hall Professional. This book was released on 2003 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensive and concise, this handbook has chapters on computing visualization, large database designs, advanced pattern matching and other key bioinformatics techniques. It is a practical guide to computing in the growing field of Bioinformatics--the study of how information is represented and transmitted in biological systems, starting at the molecular level.

The Ethical Algorithm

Download The Ethical Algorithm PDF Online Free

Author :
Publisher :
ISBN 13 : 0190948205
Total Pages : 229 pages
Book Rating : 4.1/5 (99 download)

DOWNLOAD NOW!


Book Synopsis The Ethical Algorithm by : Michael Kearns

Download or read book The Ethical Algorithm written by Michael Kearns and published by . This book was released on 2020 with total page 229 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algorithms have made our lives more efficient and entertaining--but not without a significant cost. Can we design a better future, one in which societial gains brought about by technology are balanced with the rights of citizens? The Ethical Algorithm offers a set of principled solutions based on the emerging and exciting science of socially aware algorithm design.

Parsing the Turing Test

Download Parsing the Turing Test PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1402096240
Total Pages : 520 pages
Book Rating : 4.4/5 (2 download)

DOWNLOAD NOW!


Book Synopsis Parsing the Turing Test by : Robert Epstein

Download or read book Parsing the Turing Test written by Robert Epstein and published by Springer Science & Business Media. This book was released on 2008-12-01 with total page 520 pages. Available in PDF, EPUB and Kindle. Book excerpt: An exhaustive work that represents a landmark exploration of both the philosophical and methodological issues surrounding the search for true artificial intelligence. Distinguished psychologists, computer scientists, philosophers, and programmers from around the world debate weighty issues such as whether a self-conscious computer would create an internet ‘world mind’. This hugely important volume explores nothing less than the future of the human race itself.

Computational Intelligence and Healthcare Informatics

Download Computational Intelligence and Healthcare Informatics PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119818680
Total Pages : 434 pages
Book Rating : 4.1/5 (198 download)

DOWNLOAD NOW!


Book Synopsis Computational Intelligence and Healthcare Informatics by : Om Prakash Jena

Download or read book Computational Intelligence and Healthcare Informatics written by Om Prakash Jena and published by John Wiley & Sons. This book was released on 2021-10-19 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: COMPUTATIONAL INTELLIGENCE and HEALTHCARE INFORMATICS The book provides the state-of-the-art innovation, research, design, and implements methodological and algorithmic solutions to data processing problems, designing and analysing evolving trends in health informatics, intelligent disease prediction, and computer-aided diagnosis. Computational intelligence (CI) refers to the ability of computers to accomplish tasks that are normally completed by intelligent beings such as humans and animals. With the rapid advance of technology, artificial intelligence (AI) techniques are being effectively used in the fields of health to improve the efficiency of treatments, avoid the risk of false diagnoses, make therapeutic decisions, and predict the outcome in many clinical scenarios. Modern health treatments are faced with the challenge of acquiring, analyzing and applying the large amount of knowledge necessary to solve complex problems. Computational intelligence in healthcare mainly uses computer techniques to perform clinical diagnoses and suggest treatments. In the present scenario of computing, CI tools present adaptive mechanisms that permit the understanding of data in difficult and changing environments. The desired results of CI technologies profit medical fields by assembling patients with the same types of diseases or fitness problems so that healthcare facilities can provide effectual treatments. This book starts with the fundamentals of computer intelligence and the techniques and procedures associated with it. Contained in this book are state-of-the-art methods of computational intelligence and other allied techniques used in the healthcare system, as well as advances in different CI methods that will confront the problem of effective data analysis and storage faced by healthcare institutions. The objective of this book is to provide researchers with a platform encompassing state-of-the-art innovations; research and design; implementation of methodological and algorithmic solutions to data processing problems; and the design and analysis of evolving trends in health informatics, intelligent disease prediction and computer-aided diagnosis. Audience The book is of interest to artificial intelligence and biomedical scientists, researchers, engineers and students in various settings such as pharmaceutical & biotechnology companies, virtual assistants developing companies, medical imaging & diagnostics centers, wearable device designers, healthcare assistance robot manufacturers, precision medicine testers, hospital management, and researchers working in healthcare system.

Human-in-the-Loop Machine Learning

Download Human-in-the-Loop Machine Learning PDF Online Free

Author :
Publisher : Simon and Schuster
ISBN 13 : 1617296740
Total Pages : 422 pages
Book Rating : 4.6/5 (172 download)

DOWNLOAD NOW!


Book Synopsis Human-in-the-Loop Machine Learning by : Robert Munro

Download or read book Human-in-the-Loop Machine Learning written by Robert Munro and published by Simon and Schuster. This book was released on 2021-07-20 with total page 422 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine learning applications perform better with human feedback. Keeping the right people in the loop improves the accuracy of models, reduces errors in data, lowers costs, and helps you ship models faster. Human-in-the-loop machine learning lays out methods for humans and machines to work together effectively. You'll find best practices on selecting sample data for human feedback, quality control for human annotations, and designing annotation interfaces. You'll learn to dreate training data for labeling, object detection, and semantic segmentation, sequence labeling, and more. The book starts with the basics and progresses to advanced techniques like transfer learning and self-supervision within annotation workflows.

MoneyBall Medicine

Download MoneyBall Medicine PDF Online Free

Author :
Publisher : Taylor & Francis
ISBN 13 : 1351984330
Total Pages : 591 pages
Book Rating : 4.3/5 (519 download)

DOWNLOAD NOW!


Book Synopsis MoneyBall Medicine by : Harry Glorikian

Download or read book MoneyBall Medicine written by Harry Glorikian and published by Taylor & Francis. This book was released on 2017-11-20 with total page 591 pages. Available in PDF, EPUB and Kindle. Book excerpt: How can a smartwatch help patients with diabetes manage their disease? Why can’t patients find out prices for surgeries and other procedures before they happen? How can researchers speed up the decade-long process of drug development? How will "Precision Medicine" impact patient care outside of cancer? What can doctors, hospitals, and health systems do to ensure they are maximizing high-value care? How can healthcare entrepreneurs find success in this data-driven market? A revolution is transforming the $10 trillion healthcare landscape, promising greater transparency, improved efficiency, and new ways of delivering care. This new landscape presents tremendous opportunity for those who are ready to embrace the data-driven reality. Having the right data and knowing how to use it will be the key to success in the healthcare market in the future. We are already starting to see the impacts in drug development, precision medicine, and how patients with rare diseases are diagnosed and treated. Startups are launched every week to fill an unmet need and address the current problems in the healthcare system. Digital devices and artificial intelligence are helping doctors do their jobs faster and with more accuracy. MoneyBall Medicine: Thriving in the New Data-Driven Healthcare Market, which includes interviews with dozens of healthcare leaders, describes the business challenges and opportunities arising for those working in one of the most vibrant sectors of the world’s economy. Doctors, hospital administrators, health information technology directors, and entrepreneurs need to adapt to the changes effecting healthcare today in order to succeed in the new, cost-conscious and value-based environment of the future. The authors map out many of the changes taking place, describe how they are impacting everyone from patients to researchers to insurers, and outline some predictions for the healthcare industry in the years to come.

Cyber-Humans

Download Cyber-Humans PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319250507
Total Pages : 304 pages
Book Rating : 4.3/5 (192 download)

DOWNLOAD NOW!


Book Synopsis Cyber-Humans by : Woodrow Barfield

Download or read book Cyber-Humans written by Woodrow Barfield and published by Springer. This book was released on 2015-12-17 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: It is predicted that robots will surpass human intelligence within the next fifty years. The ever increasing speed of advances in technology and neuroscience, coupled with the creation of super computers and enhanced body parts and artificial limbs, is paving the way for a merger of both human and machine. Devices which were once worn on the body are now being implanted into the body, and as a result, a class of true cyborgs, who are displaying a range of skills beyond those of normal humans-beings, are being created. There are cyborgs which can see colour by hearing sound, others have the ability to detect magnetic fields, some are equipped with telephoto lenses to aid their vision or implanted computers to monitor their heart, and some use thought to communicate with a computer or to manipulate a robotic arm. This is not science-fiction, these are developments that are really happening now, and will continue to develop in the future. However, a range of legal and policy questions has arisen alongside this rise of artificial intelligence. Cyber-Humans provides a deep and unique perspective on the technological future of humanity, and describes how law and policy will be particularly relevant in creating a fair and equal society and protecting the liberties of different life forms which will emerge in the 21st century. Dr Woodrow (Woody) Barfield previously headed up the Sensory Engineering Laboratory, holding the position of Industrial and Systems Engineering Professor at the University of Washington. His research revolves around the design and use of wearable computers and augmented reality systems and holds both JD and LLM degrees in intellectual property law and policy. He has published over 350 articles and major presentations in the areas of computer science, engineering and law. He currently lives in Chapel Hill, NC, USA.

Strengthening Forensic Science in the United States

Download Strengthening Forensic Science in the United States PDF Online Free

Author :
Publisher : National Academies Press
ISBN 13 : 0309142393
Total Pages : 348 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Strengthening Forensic Science in the United States by : National Research Council

Download or read book Strengthening Forensic Science in the United States written by National Research Council and published by National Academies Press. This book was released on 2009-07-29 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: Scores of talented and dedicated people serve the forensic science community, performing vitally important work. However, they are often constrained by lack of adequate resources, sound policies, and national support. It is clear that change and advancements, both systematic and scientific, are needed in a number of forensic science disciplines to ensure the reliability of work, establish enforceable standards, and promote best practices with consistent application. Strengthening Forensic Science in the United States: A Path Forward provides a detailed plan for addressing these needs and suggests the creation of a new government entity, the National Institute of Forensic Science, to establish and enforce standards within the forensic science community. The benefits of improving and regulating the forensic science disciplines are clear: assisting law enforcement officials, enhancing homeland security, and reducing the risk of wrongful conviction and exoneration. Strengthening Forensic Science in the United States gives a full account of what is needed to advance the forensic science disciplines, including upgrading of systems and organizational structures, better training, widespread adoption of uniform and enforceable best practices, and mandatory certification and accreditation programs. While this book provides an essential call-to-action for congress and policy makers, it also serves as a vital tool for law enforcement agencies, criminal prosecutors and attorneys, and forensic science educators.

Unsupervised Learning

Download Unsupervised Learning PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 9780262581684
Total Pages : 420 pages
Book Rating : 4.5/5 (816 download)

DOWNLOAD NOW!


Book Synopsis Unsupervised Learning by : Geoffrey Hinton

Download or read book Unsupervised Learning written by Geoffrey Hinton and published by MIT Press. This book was released on 1999-05-24 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since its founding in 1989 by Terrence Sejnowski, Neural Computation has become the leading journal in the field. Foundations of Neural Computation collects, by topic, the most significant papers that have appeared in the journal over the past nine years. This volume of Foundations of Neural Computation, on unsupervised learning algorithms, focuses on neural network learning algorithms that do not require an explicit teacher. The goal of unsupervised learning is to extract an efficient internal representation of the statistical structure implicit in the inputs. These algorithms provide insights into the development of the cerebral cortex and implicit learning in humans. They are also of interest to engineers working in areas such as computer vision and speech recognition who seek efficient representations of raw input data.