Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Generalized Notions Of Continued Fractions
Download Generalized Notions Of Continued Fractions full books in PDF, epub, and Kindle. Read online Generalized Notions Of Continued Fractions ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Generalized Notions of Continued Fractions by : Juan Fernández Sánchez
Download or read book Generalized Notions of Continued Fractions written by Juan Fernández Sánchez and published by CRC Press. This book was released on 2023-07-20 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ancient times witnessed the origins of the theory of continued fractions. Throughout time, mathematical geniuses such as Euclid, Aryabhata, Fibonacci, Bombelli, Wallis, Huygens, or Euler have made significant contributions to the development of this famous theory, and it continues to evolve today, especially as a means of linking different areas of mathematics. This book, whose primary audience is graduate students and senior researchers, is motivated by the fascinating interrelations between ergodic theory and number theory (as established since the 1950s). It examines several generalizations and extensions of classical continued fractions, including generalized Lehner, simple, and Hirzebruch-Jung continued fractions. After deriving invariant ergodic measures for each of the underlying transformations on [0,1] it is shown that any of the famous formulas, going back to Khintchine and Levy, carry over to more general settings. Complementing these results, the entropy of the transformations is calculated and the natural extensions of the dynamical systems to [0,1]2 are analyzed. Features Suitable for graduate students and senior researchers Written by international senior experts in number theory Contains the basic background, including some elementary results, that the reader may need to know before hand, making it a self-contained volume
Book Synopsis Geometry of Continued Fractions by : Oleg Karpenkov
Download or read book Geometry of Continued Fractions written by Oleg Karpenkov and published by Springer Science & Business Media. This book was released on 2013-08-15 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: Traditionally a subject of number theory, continued fractions appear in dynamical systems, algebraic geometry, topology, and even celestial mechanics. The rise of computational geometry has resulted in renewed interest in multidimensional generalizations of continued fractions. Numerous classical theorems have been extended to the multidimensional case, casting light on phenomena in diverse areas of mathematics. This book introduces a new geometric vision of continued fractions. It covers several applications to questions related to such areas as Diophantine approximation, algebraic number theory, and toric geometry. The reader will find an overview of current progress in the geometric theory of multidimensional continued fractions accompanied by currently open problems. Whenever possible, we illustrate geometric constructions with figures and examples. Each chapter has exercises useful for undergraduate or graduate courses.
Book Synopsis Recurrence Sequences by : Graham Everest
Download or read book Recurrence Sequences written by Graham Everest and published by American Mathematical Soc.. This book was released on 2015-09-03 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recurrence sequences are of great intrinsic interest and have been a central part of number theory for many years. Moreover, these sequences appear almost everywhere in mathematics and computer science. This book surveys the modern theory of linear recurrence sequences and their generalizations. Particular emphasis is placed on the dramatic impact that sophisticated methods from Diophantine analysis and transcendence theory have had on the subject. Related work on bilinear recurrences and an emerging connection between recurrences and graph theory are covered. Applications and links to other areas of mathematics are described, including combinatorics, dynamical systems and cryptography, and computer science. The book is suitable for researchers interested in number theory, combinatorics, and graph theory.
Book Synopsis Multidimensional Continued Fractions by : Fritz Schweiger
Download or read book Multidimensional Continued Fractions written by Fritz Schweiger and published by Oxford University Press, USA. This book was released on 2000 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematician Fritz Schweiger, whose academic affiliation is not provided, provides an introduction to a field of research that has seen remarkable progress in recent decades, concentrating on multidimensional continued fractions which can be described by fractional linear maps or equivalently by a set of (n + 1) x (n + 1) matrices. Addressing the question of periodicity, he refines the problem of convergence to the question of whether these algorithms give "good" simultaneous Diophantine approximations. He notes that these algorithms are not likely to provide such "good" approximations which satisfy the n-dimensional Dirichlet property. Also studied are the ergodic properties of these maps. Annotation copyrighted by Book News Inc., Portland, OR
Book Synopsis Continued Fractions and Signal Processing by : Tomas Sauer
Download or read book Continued Fractions and Signal Processing written by Tomas Sauer and published by Springer Nature. This book was released on 2021-09-06 with total page 275 pages. Available in PDF, EPUB and Kindle. Book excerpt: Besides their well-known value in number theory, continued fractions are also a useful tool in modern numerical applications and computer science. The goal of the book is to revisit the almost forgotten classical theory and to contextualize it for contemporary numerical applications and signal processing, thus enabling students and scientist to apply classical mathematics on recent problems. The books tries to be mostly self-contained and to make the material accessible for all interested readers. This provides a new view from an applied perspective, combining the classical recursive techniques of continued fractions with orthogonal problems, moment problems, Prony’s problem of sparse recovery and the design of stable rational filters, which are all connected by continued fractions.
Book Synopsis Continued Fractions by : William B. Jones
Download or read book Continued Fractions written by William B. Jones and published by Cambridge University Press. This book was released on 2009-02-19 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an exposition of the analytic theory of continued fractions in the complex domain with emphasis on applications and computational methods.
Book Synopsis Experimentation in Mathematics by : Jonathan M. Borwein
Download or read book Experimentation in Mathematics written by Jonathan M. Borwein and published by CRC Press. This book was released on 2004-04-12 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: New mathematical insights and rigorous results are often gained through extensive experimentation using numerical examples or graphical images and analyzing them. Today computer experiments are an integral part of doing mathematics. This allows for a more systematic approach to conducting and replicating experiments. The authors address the role of
Book Synopsis Neverending Fractions by : Jonathan Borwein
Download or read book Neverending Fractions written by Jonathan Borwein and published by Cambridge University Press. This book was released on 2014-07-03 with total page 223 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introductory text covers a variety of applications to interest every reader, from researchers to amateur mathematicians.
Book Synopsis Analytic Theory of Continued Fractions by : Hubert Stanley Wall
Download or read book Analytic Theory of Continued Fractions written by Hubert Stanley Wall and published by Courier Dover Publications. This book was released on 2018-05-16 with total page 449 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the most authoritative and comprehensive books on the subject of continued fractions, this monograph has been widely used by generations of mathematicians and their students. Dr. Hubert Stanley Wall presents a unified theory correlating certain parts and applications of the subject within a larger analytic structure. Prerequisites include a first course in function theory and knowledge of the elementary properties of linear transformations in the complex plane. Some background in number theory, real analysis, and complex analysis may also prove helpful. The two-part treatment begins with an exploration of convergence theory, addressing continued fractions as products of linear fractional transformations, convergence theorems, and the theory of positive definite continued fractions, as well as other topics. The second part, focusing on function theory, covers the theory of equations, matrix theory of continued fractions, bounded analytic functions, and many additional subjects.
Book Synopsis Ergodic Theory of Numbers by : Karma Dajani
Download or read book Ergodic Theory of Numbers written by Karma Dajani and published by American Mathematical Soc.. This book was released on 2002-12-31 with total page 201 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ergodic Theory of Numbers looks at the interaction between two fields of mathematics: number theory and ergodic theory (as part of dynamical systems). It is an introduction to the ergodic theory behind common number expansions, like decimal expansions, continued fractions, and many others. However, its aim does not stop there. For undergraduate students with sufficient background knowledge in real analysis and graduate students interested in the area, it is also an introduction to a "dynamical way of thinking". The questions studied here are dynamical as well as number theoretical in nature, and the answers are obtained with the help of ergodic theory. Attention is focused on concepts like measure-preserving, ergodicity, natural extension, induced transformations, and entropy. These concepts are then applied to familiar expansions to obtain old and new results in an elegant and straightforward manner. What it means to be ergodic and the basic ideas behind ergodic theory will be explained along the way. The subjects covered vary from classical to recent, which makes this book appealing to researchers as well as students.
Book Synopsis History of Continued Fractions and Padé Approximants by : Claude Brezinski
Download or read book History of Continued Fractions and Padé Approximants written by Claude Brezinski and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 556 pages. Available in PDF, EPUB and Kindle. Book excerpt: The history of continued fractions is certainly one of the longest among those of mathematical concepts, since it begins with Euclid's algorithm for the great est common divisor at least three centuries B.C. As it is often the case and like Monsieur Jourdain in Moliere's "Ie bourgeois gentilhomme" (who was speak ing in prose though he did not know he was doing so), continued fractions were used for many centuries before their real discovery. The history of continued fractions and Pade approximants is also quite im portant, since they played a leading role in the development of some branches of mathematics. For example, they were the basis for the proof of the tran scendence of 11' in 1882, an open problem for more than two thousand years, and also for our modern spectral theory of operators. Actually they still are of great interest in many fields of pure and applied mathematics and in numerical analysis, where they provide computer approximations to special functions and are connected to some convergence acceleration methods. Con tinued fractions are also used in number theory, computer science, automata, electronics, etc ...
Book Synopsis Elements of Number Theory by : I. M. Vinogradov
Download or read book Elements of Number Theory written by I. M. Vinogradov and published by Courier Dover Publications. This book was released on 2016-01-14 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: Clear, detailed exposition that can be understood by readers with no background in advanced mathematics. More than 200 problems and full solutions, plus 100 numerical exercises. 1949 edition.
Book Synopsis Continued Fractions by : Doug Hensley
Download or read book Continued Fractions written by Doug Hensley and published by World Scientific. This book was released on 2006-03-01 with total page 261 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Euclidean algorithm is one of the oldest in mathematics, while the study of continued fractions as tools of approximation goes back at least to Euler and Legendre. While our understanding of continued fractions and related methods for simultaneous diophantine approximation has burgeoned over the course of the past decade and more, many of the results have not been brought together in book form. Continued fractions have been studied from the perspective of number theory, complex analysis, ergodic theory, dynamic processes, analysis of algorithms, and even theoretical physics, which has further complicated the situation.This book places special emphasis on continued fraction Cantor sets and the Hausdorff dimension, algorithms and analysis of algorithms, and multi-dimensional algorithms for simultaneous diophantine approximation. Extensive, attractive computer-generated graphics are presented, and the underlying algorithms are discussed and made available.
Book Synopsis Handbook of Continued Fractions for Special Functions by : Annie A.M. Cuyt
Download or read book Handbook of Continued Fractions for Special Functions written by Annie A.M. Cuyt and published by Springer Science & Business Media. This book was released on 2008-04-12 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt: Special functions are pervasive in all fields of science and industry. The most well-known application areas are in physics, engineering, chemistry, computer science and statistics. Because of their importance, several books and websites (see for instance http: functions.wolfram.com) and a large collection of papers have been devoted to these functions. Of the standard work on the subject, the Handbook of mathematical functions with formulas, graphs and mathematical tables edited by Milton Abramowitz and Irene Stegun, the American National Institute of Standards claims to have sold over 700 000 copies! But so far no project has been devoted to the systematic study of continued fraction representations for these functions. This handbook is the result of such an endeavour. We emphasise that only 10% of the continued fractions contained in this book, can also be found in the Abramowitz and Stegun project or at the Wolfram website!
Book Synopsis Proofs that Really Count by : Arthur T. Benjamin
Download or read book Proofs that Really Count written by Arthur T. Benjamin and published by American Mathematical Society. This book was released on 2022-09-21 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematics is the science of patterns, and mathematicians attempt to understand these patterns and discover new ones using a variety of tools. In Proofs That Really Count, award-winning math professors Arthur Benjamin and Jennifer Quinn demonstrate that many number patterns, even very complex ones, can be understood by simple counting arguments. The book emphasizes numbers that are often not thought of as numbers that count: Fibonacci Numbers, Lucas Numbers, Continued Fractions, and Harmonic Numbers, to name a few. Numerous hints and references are given for all chapter exercises and many chapters end with a list of identities in need of combinatorial proof. The extensive appendix of identities will be a valuable resource. This book should appeal to readers of all levels, from high school math students to professional mathematicians.
Book Synopsis Continued Fractions and Orthogonal Functions by : S. Clement Cooper
Download or read book Continued Fractions and Orthogonal Functions written by S. Clement Cooper and published by CRC Press. This book was released on 1993-11-17 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: This reference - the proceedings of a research conference held in Loen, Norway - contains information on the analytic theory of continued fractions and their application to moment problems and orthogonal sequences of functions. Uniting the research efforts of many international experts, this volume: treats strong moment problems, orthogonal polynomials and Laurent polynomials; analyses sequences of linear fractional transformations; presents convergence results, including truncation error bounds; considers discrete distributions and limit functions arising from indeterminate moment problems; discusses Szego polynomials and their applications to frequency analysis; describes the quadrature formula arising from q-starlike functions; and covers continued fractional representations for functions related to the gamma function.;This resource is intended for mathematical and numerical analysts; applied mathematicians; physicists; chemists; engineers; and upper-level undergraduate and agraduate students in these disciplines.
Book Synopsis The Golden Ratio And Fibonacci Numbers by : Richard A Dunlap
Download or read book The Golden Ratio And Fibonacci Numbers written by Richard A Dunlap and published by World Scientific. This book was released on 1997-12-16 with total page 170 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this invaluable book, the basic mathematical properties of the golden ratio and its occurrence in the dimensions of two- and three-dimensional figures with fivefold symmetry are discussed. In addition, the generation of the Fibonacci series and generalized Fibonacci series and their relationship to the golden ratio are presented. These concepts are applied to algorithms for searching and function minimization. The Fibonacci sequence is viewed as a one-dimensional aperiodic, lattice and these ideas are extended to two- and three-dimensional Penrose tilings and the concept of incommensurate projections. The structural properties of aperiodic crystals and the growth of certain biological organisms are described in terms of Fibonacci sequences.