Fundamental Understanding and Modelling of Turbulent Premixed Flame Wall Interaction

Download Fundamental Understanding and Modelling of Turbulent Premixed Flame Wall Interaction PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (19 download)

DOWNLOAD NOW!


Book Synopsis Fundamental Understanding and Modelling of Turbulent Premixed Flame Wall Interaction by : Jiawei Lai

Download or read book Fundamental Understanding and Modelling of Turbulent Premixed Flame Wall Interaction written by Jiawei Lai and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Modeling and Simulation of Turbulent Combustion

Download Modeling and Simulation of Turbulent Combustion PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9811074100
Total Pages : 663 pages
Book Rating : 4.8/5 (11 download)

DOWNLOAD NOW!


Book Synopsis Modeling and Simulation of Turbulent Combustion by : Santanu De

Download or read book Modeling and Simulation of Turbulent Combustion written by Santanu De and published by Springer. This book was released on 2017-12-12 with total page 663 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a comprehensive review of state-of-the-art models for turbulent combustion, with special emphasis on the theory, development and applications of combustion models in practical combustion systems. It simplifies the complex multi-scale and nonlinear interaction between chemistry and turbulence to allow a broader audience to understand the modeling and numerical simulations of turbulent combustion, which remains at the forefront of research due to its industrial relevance. Further, the book provides a holistic view by covering a diverse range of basic and advanced topics—from the fundamentals of turbulence–chemistry interactions, role of high-performance computing in combustion simulations, and optimization and reduction techniques for chemical kinetics, to state-of-the-art modeling strategies for turbulent premixed and nonpremixed combustion and their applications in engineering contexts.

Turbulent Combustion Modeling

Download Turbulent Combustion Modeling PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9400704127
Total Pages : 496 pages
Book Rating : 4.4/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Turbulent Combustion Modeling by : Tarek Echekki

Download or read book Turbulent Combustion Modeling written by Tarek Echekki and published by Springer Science & Business Media. This book was released on 2010-12-25 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: Turbulent combustion sits at the interface of two important nonlinear, multiscale phenomena: chemistry and turbulence. Its study is extremely timely in view of the need to develop new combustion technologies in order to address challenges associated with climate change, energy source uncertainty, and air pollution. Despite the fact that modeling of turbulent combustion is a subject that has been researched for a number of years, its complexity implies that key issues are still eluding, and a theoretical description that is accurate enough to make turbulent combustion models rigorous and quantitative for industrial use is still lacking. In this book, prominent experts review most of the available approaches in modeling turbulent combustion, with particular focus on the exploding increase in computational resources that has allowed the simulation of increasingly detailed phenomena. The relevant algorithms are presented, the theoretical methods are explained, and various application examples are given. The book is intended for a relatively broad audience, including seasoned researchers and graduate students in engineering, applied mathematics and computational science, engine designers and computational fluid dynamics (CFD) practitioners, scientists at funding agencies, and anyone wishing to understand the state-of-the-art and the future directions of this scientifically challenging and practically important field.

Fundamentals of Turbulent and Multiphase Combustion

Download Fundamentals of Turbulent and Multiphase Combustion PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 111809929X
Total Pages : 914 pages
Book Rating : 4.1/5 (18 download)

DOWNLOAD NOW!


Book Synopsis Fundamentals of Turbulent and Multiphase Combustion by : Kenneth Kuan-yun Kuo

Download or read book Fundamentals of Turbulent and Multiphase Combustion written by Kenneth Kuan-yun Kuo and published by John Wiley & Sons. This book was released on 2012-07-03 with total page 914 pages. Available in PDF, EPUB and Kindle. Book excerpt: Detailed coverage of advanced combustion topics from the author of Principles of combustion, Second Edition Turbulence, turbulent combustion, and multiphase reacting flows have become major research topics in recent decades due to their application across diverse fields, including energy, environment, propulsion, transportation, industrial safety, and nanotechnology. Most of the knowledge accumulated from this research has never been published in book form—until now. Fundamentals of Turbulent and Multiphase Combustion presents up-to-date, integrated coverage of the fundamentals of turbulence, combustion, and multiphase phenomena along with useful experimental techniques, including non-intrusive, laser-based measurement techniques, providing a firm background in both contemporary and classical approaches. Beginning with two full chapters on laminar premixed and non-premixed flames, this book takes a multiphase approach, beginning with more common topics and moving on to higher-level applications. In addition, Fundamentals of Turbulent and Multiphase Combustion: Addresses seven basic topical areas in combustion and multiphase flows, including laminar premixed and non-premixed flames, theory of turbulence, turbulent premixed and non-premixed flames, and multiphase flows Covers spray atomization and combustion, solid-propellant combustion, homogeneous propellants, nitramines, reacting boundary-layer flows, single energetic particle combustion, and granular bed combustion Provides experimental setups and results whenever appropriate Supported with a large number of examples and problems as well as a solutions manual, Fundamentals of Turbulent and Multiphase Combustion is an important resource for professional engineers and researchers as well as graduate students in mechanical, chemical, and aerospace engineering.

Large Eddy Simulations of Premixed Turbulent Flame Dynamics

Download Large Eddy Simulations of Premixed Turbulent Flame Dynamics PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 300 pages
Book Rating : 4.:/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Large Eddy Simulations of Premixed Turbulent Flame Dynamics by : Gaurav Kewlani

Download or read book Large Eddy Simulations of Premixed Turbulent Flame Dynamics written by Gaurav Kewlani and published by . This book was released on 2014 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: High efficiency, low emissions and stable operation over a wide range of conditions are some of the key requirements of modem-day combustors. To achieve these objectives, lean premixed flames are generally preferred as they achieve efficient and clean combustion. A drawback of lean premixed combustion, however, is that the flames are more prone to dynamics. The unsteady release of sensible heat and flow dilatation in combustion processes create pressure fluctuations which, particularly in premixed flames, can couple with the acoustics of the combustion system. This acoustic coupling creates a feedback loop with the heat release that can lead to severe thermoacoustic instabilities that can damage the combustor. Understanding these dynamics, predicting their onset and proposing passive and active control strategies are critical to large-scale implementation. For the numerical study of such systems, large eddy simulation (LES) techniques with appropriate combustion models and reaction mechanisms are highly appropriate. These approaches balance the computational complexity and predictive accuracy. This work, therefore, aims to explore the applicability of these methods to the study of premixed wake stabilized flames. Specifically, finite rate chemistry LES models that can effectively capture the interaction between different turbulent scales and the combustion fronts have been implemented, and applied for the analysis of premixed turbulent flame dynamics in laboratory-scale combustor configurations. Firstly, the artificial flame thickening approach, along with an appropriate reduced chemistry mechanism, is utilized for modeling turbulence-combustion interactions at small scales. A novel dynamic formulation is proposed that explicitly incorporates the influence of strain on flame wrinkling by solving a transport equation for the latter rather than using local-equilibrium-based algebraic models. Additionally, a multiple-step combustion chemistry mechanism is used for the simulations. Secondly, the presumed-PDF approach, coupled with the flamelet generated manifold (FGM) technique, is also implemented for modeling turbulence-combustion interactions. The proposed formulation explicitly incorporates the influence of strain via the scalar dissipation rate and can result in more accurate predictions especially for highly unsteady flame configurations. Specifically, the dissipation rate is incorporated as an additional coordinate to presume the PDF and strained flamelets are utilized to generate the chemistry databases. These LES solvers have been developed and applied for the analysis of reacting flows in several combustor configurations, i.e. triangular bluff body in a rectangular channel, backward facing step configuration, axi-symmetric bluff body in cylindrical chamber, and cylindrical sudden expansion with swirl, and their performance has been be validated against experimental observations. Subsequently, the impact of the equivalence ratio variation on flame-flow dynamics is studied for the swirl configuration using the experimental PIV data as well as the numerical LES code, following which dynamic mode decomposition of the flow field is performed. It is observed that increasing the equivalence ratio can appreciably influence the dominant flow features in the wake region, including the size and shape of the recirculation zone(s), as well as the flame dynamics. Specifically, varying the heat loading results in altering the dominant flame stabilization mechanism, thereby causing transitions across distinct- flame configurations, while also modifying the inner recirculation zone topology significantly. Additionally, the LES framework has also been applied to gain an insight into the combustion dynamics phenomena for the backward-facing step configuration. Apart from evaluating the influence of equivalence ratio on the combustion process for stable flames, the flame-flow interactions in acoustically forced scenarios are also analyzed using LES and dynamic mode decomposition (DMD). Specifically, numerical simulations are performed corresponding to a selfexcited combustion instability configuration as observed in the experiments, and it is observed that LES is able to suitably capture the flame dynamics. These insights highlight the effect of heat release variation on flame-flow interactions in wall-confined combustor configurations, which can significantly impact combustion stability in acoustically-coupled systems. The fidelity of the solvers in predicting the system response to variation in heat loading and to acoustic forcing suggests that the LES framework can be suitably applied for the analysis of flame dynamics as well as to understand the fundamental mechanisms responsible for combustion instability. KEY WORDS - large eddy simulation, LES, wake stabilized flame, turbulent premixed combustion, combustion modeling, artificially thickened flame model, triangular bluff body, backward facing step combustor, presumed-PDF model, flamelet generated manifold, axi-symmetric bluff body, cylindrical swirl combustor, particle image velocimetry, dynamic mode decomposition, combustion instability, forced response.

Turbulent Premixed Flames

Download Turbulent Premixed Flames PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1139498584
Total Pages : 447 pages
Book Rating : 4.1/5 (394 download)

DOWNLOAD NOW!


Book Synopsis Turbulent Premixed Flames by : Nedunchezhian Swaminathan

Download or read book Turbulent Premixed Flames written by Nedunchezhian Swaminathan and published by Cambridge University Press. This book was released on 2011-04-25 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: A work on turbulent premixed combustion is important because of increased concern about the environmental impact of combustion and the search for new combustion concepts and technologies. An improved understanding of lean fuel turbulent premixed flames must play a central role in the fundamental science of these new concepts. Lean premixed flames have the potential to offer ultra-low emission levels, but they are notoriously susceptible to combustion oscillations. Thus, sophisticated control measures are inevitably required. The editors' intent is to set out the modeling aspects in the field of turbulent premixed combustion. Good progress has been made on this topic, and this cohesive volume contains contributions from international experts on various subtopics of the lean premixed flame problem.

Fundamentals of Premixed Turbulent Combustion

Download Fundamentals of Premixed Turbulent Combustion PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1466510242
Total Pages : 551 pages
Book Rating : 4.4/5 (665 download)

DOWNLOAD NOW!


Book Synopsis Fundamentals of Premixed Turbulent Combustion by : Andrei Lipatnikov

Download or read book Fundamentals of Premixed Turbulent Combustion written by Andrei Lipatnikov and published by CRC Press. This book was released on 2012-10-24 with total page 551 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lean burning of premixed gases is considered to be a promising combustion technology for future clean and highly efficient gas turbine combustors. Yet researchers face several challenges in dealing with premixed turbulent combustion, from its nonlinear multiscale nature and the impact of local phenomena to the multitude of competing models. Filling a gap in the literature, Fundamentals of Premixed Turbulent Combustion introduces the state of the art of premixed turbulent combustion in an accessible manner for newcomers and experienced researchers alike. To more deeply consider current research issues, the book focuses on the physical mechanisms and phenomenology of premixed flames, with a brief discussion of recent advances in partially premixed turbulent combustion. It begins with a summary of the relevant knowledge needed from disciplines such as thermodynamics, chemical kinetics, molecular transport processes, and fluid dynamics. The book then presents experimental data on the general appearance of premixed turbulent flames and details the physical mechanisms that could affect the flame behavior. It also examines the physical and numerical models for predicting the key features of premixed turbulent combustion. Emphasizing critical analysis, the book compares competing concepts and viewpoints with one another and with the available experimental data, outlining the advantages and disadvantages of each approach. In addition, it discusses recent advances and highlights unresolved issues. Written by a leading expert in the field, this book provides a valuable overview of the physics of premixed turbulent combustion. Combining simplicity and topicality, it helps researchers orient themselves in the contemporary literature and guides them in selecting the best research tools for their work.

Direct Numerical Simulation for Turbulent Reacting Flows

Download Direct Numerical Simulation for Turbulent Reacting Flows PDF Online Free

Author :
Publisher : Editions TECHNIP
ISBN 13 : 9782710806981
Total Pages : 328 pages
Book Rating : 4.8/5 (69 download)

DOWNLOAD NOW!


Book Synopsis Direct Numerical Simulation for Turbulent Reacting Flows by : Thierry Baritaud

Download or read book Direct Numerical Simulation for Turbulent Reacting Flows written by Thierry Baritaud and published by Editions TECHNIP. This book was released on 1996 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contents: Description of accurate boundary conditions for the simulation of reactive flows. Parallel direct numerical simulation of turbulent reactive flow. Flame-wall interaction and heat flux modelling in turbulent channel flow. A numerical study of laminar flame wall interaction with detailed chemistry: wall temperature effects. Modeling and simulation of turbulent flame kernel evolution. Experimental and theoretical analysis of flame surface density modelling for premixed turbulent combustion. Gradient and counter-gradient transport in turbulent premixed flames. Direct numerical simulation of turbulent flames with complex chemical kinetics. Effects of curvature and unsteadiness in diffusion flames. Implications for turbulent diffusion combustion. Numerical simulations of autoignition in turbulent mixing flows. Stabilization processes of diffusion flames. References.

Turbulent Combustion

Download Turbulent Combustion PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1139428063
Total Pages : 322 pages
Book Rating : 4.1/5 (394 download)

DOWNLOAD NOW!


Book Synopsis Turbulent Combustion by : Norbert Peters

Download or read book Turbulent Combustion written by Norbert Peters and published by Cambridge University Press. This book was released on 2000-08-15 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: The combustion of fossil fuels remains a key technology for the foreseeable future. It is therefore important that we understand the mechanisms of combustion and, in particular, the role of turbulence within this process. Combustion always takes place within a turbulent flow field for two reasons: turbulence increases the mixing process and enhances combustion, but at the same time combustion releases heat which generates flow instability through buoyancy, thus enhancing the transition to turbulence. The four chapters of this book present a thorough introduction to the field of turbulent combustion. After an overview of modeling approaches, the three remaining chapters consider the three distinct cases of premixed, non-premixed, and partially premixed combustion, respectively. This book will be of value to researchers and students of engineering and applied mathematics by demonstrating the current theories of turbulent combustion within a unified presentation of the field.

Fundamental Understanding and Modelling of Turbulent Combustion in Stratified Mixtures Using Direct Numerical Simulations(DNS).

Download Fundamental Understanding and Modelling of Turbulent Combustion in Stratified Mixtures Using Direct Numerical Simulations(DNS). PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (768 download)

DOWNLOAD NOW!


Book Synopsis Fundamental Understanding and Modelling of Turbulent Combustion in Stratified Mixtures Using Direct Numerical Simulations(DNS). by : Sean Malkeson

Download or read book Fundamental Understanding and Modelling of Turbulent Combustion in Stratified Mixtures Using Direct Numerical Simulations(DNS). written by Sean Malkeson and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Non-premixed Flame-turbulence Interaction in Compressible Turbulent Flow

Download Non-premixed Flame-turbulence Interaction in Compressible Turbulent Flow PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 5 pages
Book Rating : 4.:/5 (727 download)

DOWNLOAD NOW!


Book Synopsis Non-premixed Flame-turbulence Interaction in Compressible Turbulent Flow by :

Download or read book Non-premixed Flame-turbulence Interaction in Compressible Turbulent Flow written by and published by . This book was released on 2002 with total page 5 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonpremixed turbulent reacting flows are intrinsically difficult to model due to the strong coupling between turbulent motions and reaction. The large amount of heat released by a typical hydrocarbon flame leads to significant modifications of the thermodynamic variables and the molecular transport coefficients and thus alters the fluid dynamics. Additionally, in nonpremixed combustion, the flame has a complex spatial structure. Localized expansions and contractions occur, enhancing the dilatational motions. Therefore, the compressibility of the flow and the heat release are intimately related. However, fundamental studies of the role of compressibility on the scalar mixing and reaction are scarce. In this paper they present results concerning the fundamental aspects of the interaction between non-premixed flame and compressible turbulence.

Phenomenology and Modelling of Flame-Wall-Interactions in Spark-Ignition-Engines

Download Phenomenology and Modelling of Flame-Wall-Interactions in Spark-Ignition-Engines PDF Online Free

Author :
Publisher : Cuvillier Verlag
ISBN 13 : 3736989245
Total Pages : 178 pages
Book Rating : 4.7/5 (369 download)

DOWNLOAD NOW!


Book Synopsis Phenomenology and Modelling of Flame-Wall-Interactions in Spark-Ignition-Engines by : Dominik Suckart

Download or read book Phenomenology and Modelling of Flame-Wall-Interactions in Spark-Ignition-Engines written by Dominik Suckart and published by Cuvillier Verlag. This book was released on 2019-01-03 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt: The optimization of combustion in reciprocating engines necessitates an in-depth understanding of the underlying processes as well as accurate and comprehensive physical models. In this respect, the current knowledge on the last stage of combustion in which the flame interacts with the combustion chamber walls is limited. Hence, the objective of this book is to improve the understanding of flame-wall interaction and its modelling. Using a comprehensive analysis of the existing literature on flame-wall interactions as a starting point, the quenching process in a direct-injection spark-ignition engine is investigated via a combination of highly resolved wall heat flux measurements and extensive numerical simulations in order to gain insight into the underlying physical processes. Building on the results, a consistent modelling approach is systematically derived based on the physics of flame quenching and post-flame oxidation. The resulting flame-wall interaction model is based on the G-equation combustion model and incorporates the effects of flame quenching and near-wall turbulence. Finally, the model is applied to simulate combustion in a turbulent channel flow as well as in spark-ignition engines. The results are highlighting the importance of flame-wall interactions for premixed combustion processes in engines and their prediction via simulation.

Turbulent Partially Premixed Combustion

Download Turbulent Partially Premixed Combustion PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (847 download)

DOWNLOAD NOW!


Book Synopsis Turbulent Partially Premixed Combustion by : S. Ruan

Download or read book Turbulent Partially Premixed Combustion written by S. Ruan and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Increasingly stringent regulation of pollutant emission has motivated the search for cleaner and more efficient combustion devices, which remain the primary means of power generation and propulsion for all kinds of transport. Fuel-lean premixed combustion technology has been identified to be a promising approach, despite many difficulties involve, notably issues concerning flame stability and ignitability. A partially premixed system has been introduced to remedy these problems, however, our understanding on this combustion mode needs to be greatly improved to realise its full potential. This thesis aims to further the understanding of various fundamental physical processes in turbulent partially premixed flames. DNS data of a laboratory-scale hydrogen turbulent jet lifted flame is analysed in this study. The partially premixed nature of this flame is established by examining the instantaneous and averaged reaction rates and the "Flame Index", which indicate premixed and diffusion burning modes coexisting. The behaviour of turbulent flame stretch and its relation to other physical processes, in particular the scalar-turbulence interaction, the effects of partial premixing on the displacement speed of iso-scalar surface and its correlation with the surface curvature are explored using DNS data. The scalar gradient alignment characteristics change from aligning with the most compressive strain to aligning with the most extensive one in regions of intensive heat release. This alignment change creates negative normal strain rate which can result in negative surface averaged tangential strain rate. The partial premixing affects the flame surface displacement speed through the mixture fraction dissipation rate and a second derivative in the mixture fraction space. The correlation of curvature and displacement speed is found to be negative in general and the effects of partial premixing act to reduce this negative correlation. The combined effects of the normal strain rate and the displacement speed/curvature correlation contribute to the negative mean flame stretch observed in the flame brush. Scalar dissipation rates (SDR) of the mixture fraction ẼZZ, progress variable Ẽcc and their cross dissipation rates (CDR) ẼcZ are identified as important quantities in the modelling of partially premixed flames. Their behaviours in the lifted flame stabilisation region are examined in a unified framework. It is found that SDR of mixture fraction is well below the quenching value in this region while SDR of progress variable is smaller than that in laminar flames. The CDR changes from weakly positive to negative at the flame leading edge due to the change in scalar gradient alignment characteristics. Axial and radial variation of these quantities are analysed and it is found that Ẽcc is an order of magnitude bigger than ẼZZ. ẼcZ is two orders of magnitude smaller than Ẽcc and it can be either positive or negative depending on local flow and flame conditions. Simple algebraic models show reasonable agreement compared to DNS when a suitable definition of c is used. Further statistics of the scalar gradients are presented and a presumed lognormal distribution is found to give reasonable results for their marginal PDFs and a bivariate lognormal distribution is a good approximation for their joint PDF. Four mean reaction rate closures based on presumed PDF and flamelets are assessed a priori using DNS data. The turbulent flame front structure is first compared with unstrained and strained laminar premixed and dif fusion flamelets. It is found that unstrained premixed flamelets give overall reasonable approximation in most parts of this flame. A joint PDF model which includes the correlation between mixture fraction and progress variable using a "copula" method shows excellent agreement with DNS results while their statistical independence does not hold in the burning regions of this partially premixed flame. The unstrained premixed flamelet with the correlated joint PDF method is identified to be the most appropriate model for the lifted jet flame calculation. This model is then used in the RANS simulation of turbulent jet lifted flames. A new model to include the contribution from diffusion burning and the effects of partial premixing due to SDR of mixture fraction is also identified and included in the calculation. These models are implemented in a commercial CFD code "Fluent" with user defined scalars and functions. It is found that both the correlated joint PDF model and the model accounting for the diffusive burning in partial premixing are important in order to accurately predict flame lift-off height compared to the experiments.

Transport Phenomena in Fires

Download Transport Phenomena in Fires PDF Online Free

Author :
Publisher : WIT Press
ISBN 13 : 1845641604
Total Pages : 497 pages
Book Rating : 4.8/5 (456 download)

DOWNLOAD NOW!


Book Synopsis Transport Phenomena in Fires by : Mohammad Faghri

Download or read book Transport Phenomena in Fires written by Mohammad Faghri and published by WIT Press. This book was released on 2008 with total page 497 pages. Available in PDF, EPUB and Kindle. Book excerpt: Controlled fires are beneficial for the generation of heat and power while uncontrolled fires, like fire incidents and wildfires, are detrimental and can cause enormous material damage and human suffering. This edited book presents the state-of-the-art of modeling and numerical simulation of the important transport phenomena in fires. It describes how computational procedures can be used in analysis and design of fire protection and fire safety. Computational fluid dynamics, turbulence modeling, combustion, soot formation, thermal radiation modeling are demonstrated and applied to pool fires, flame spread, wildfires, fires in buildings and other examples.

Gas Phase Chemical Reaction Systems

Download Gas Phase Chemical Reaction Systems PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642802990
Total Pages : 350 pages
Book Rating : 4.6/5 (428 download)

DOWNLOAD NOW!


Book Synopsis Gas Phase Chemical Reaction Systems by : Jürgen Wolfrum

Download or read book Gas Phase Chemical Reaction Systems written by Jürgen Wolfrum and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume consists of edited papers presented at the International Symposion Gas Phase Chemical Reaction Systems: Experiments and Models 100 Years After Max Bodenslein, held at the Internationales Wissenschaftsforum Heidelberg (IWH) in Heidelberg during July 25-28, 1995. The intention of this symposion was to bring together leading researchers from the fields of reaction dynamics, kinetics, catalysis and reactive flow model ling to discuss and review the advances in the understanding of chemical kinetics about 100 years after Max Bodenstein's pioneering work on the "hydrogen iodine reaction", which he carried out at the Chemistry Institute of the University of Heidelberg. The idea to focus in his doctoral thesis [1] on this reaction was brought up by his supervisor Victor Meyer (successor of Robert Bunsen at the Chemistry Institute of the University of Heidelberg) and originated from the non reproducible behaviour found by Bunsen and Roscoe in their early photochemical investigations of the H2/Cl2 system [2] and by van't Hoff [3], and V. Meyer and co-workers [4] in their experiments on the slow combustion of H2/02 mixtures.

Fundamentals and Technology of Combustion

Download Fundamentals and Technology of Combustion PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0080532187
Total Pages : 863 pages
Book Rating : 4.0/5 (85 download)

DOWNLOAD NOW!


Book Synopsis Fundamentals and Technology of Combustion by : F El-Mahallawy

Download or read book Fundamentals and Technology of Combustion written by F El-Mahallawy and published by Elsevier. This book was released on 2002-07-10 with total page 863 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fundamentals and Technology of Combustion contains brief descriptions of combustion fundamental processes, followed by an extensive survey of the combustion research technology. It also includes mathematical combustion modeling of the processes covering mainly premixed and diffusion flames, where many chemical and physical processes compete in complex ways, for both laminar and turbulent flows. The combustion chemistry models that validate experimental data for different fuels are sufficiently accurate to allow confident predictions of the flame characteristics. This illustrates a unique bridge between combustion fundamentals and combustion technology, which provides a valuable technical reference for many engineers and scientists. Moreover, the book gives the reader sufficient background of basic engineering sciences such as chemistry, thermodynamics, heat transfer and fluid mechanics. The combustion research and mathematical models fit between small-scale laboratory burner flames, and large-scale industrial boilers, furnaces and combustion chambers. The materials have been collected from previous relevant research and some selected papers of the authors and co-workers, which have been presented mainly in different refereed journals, international conferences and symposia, thus providing a comprehensive collection. Furthermore, the book includes some of the many recent general correlations for the characteristics of laminar, turbulent, premixed and diffusion flames in an easily usable form. The authors believe that further progress in optimizing combustion performance and reducing polluting emissions can only be treated through understanding of combustion chemistry.

Analysis of Inter-scale Turbulence-Chemistry Dynamics with Reduced Physics Simulations for Application to Large-Eddy Simulation of Premixed Turbulent Combustion

Download Analysis of Inter-scale Turbulence-Chemistry Dynamics with Reduced Physics Simulations for Application to Large-Eddy Simulation of Premixed Turbulent Combustion PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (11 download)

DOWNLOAD NOW!


Book Synopsis Analysis of Inter-scale Turbulence-Chemistry Dynamics with Reduced Physics Simulations for Application to Large-Eddy Simulation of Premixed Turbulent Combustion by : Paulo Lucena Kreppel Paes

Download or read book Analysis of Inter-scale Turbulence-Chemistry Dynamics with Reduced Physics Simulations for Application to Large-Eddy Simulation of Premixed Turbulent Combustion written by Paulo Lucena Kreppel Paes and published by . This book was released on 2019 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Large Eddy Simulation (LES) is a powerful formulation to model turbulent reacting flows with tradeoffs between complexity and resolution. The classical LES framework assumes that the evolution of the more energetic grid-filtered motions are dominated by the dynamical interactions that are explicitly resolved on an "effective grid" that incorporates implicit and/or explicit filtering at the smallest grid-resolvable scales by non-physical friction introduced by the numerical algorithm and modeled terms. The dynamical effects of the unresolved Sub-Filter-Scale (SFS) motions on the evolution of the Resolved-Scale (RS) motions are higher order modulations. However, the application of the classical LES framework to turbulent reacting flows is not clear since dynamically first-order chemical kinetics associated with heat release reside within mostly unresolved SFS thin flame regions. Consequently, key dynamics underlying the function of combustion devices often reside dominantly within unresolved SFS motions in contradiction to the fundamental requirement underlying accurate prediction of resolved-scale dynamics with LES. Furthermore, the topological structure of the flame is necessarily frontal in nature (i.e., sheet-like structure), which poses difficulties for an LES strategy that must model coherent structures that live partially in resolved and partially in subfilter scale fluctuations with a method that treats turbulence eddies as either resolved or subfilter scale. In my research program, we explore the introduction of new modeling elements embedded within current state-of-the-art LES frameworks to capture the impacts of the dynamically dominant inter-scale couplings between RS and SFS motions to improve the predictive accuracy of premixed turbulent combustion evolution at the resolved scales. We aim to systematically refine understanding of the inter-scale interactions between coherent structural features in physical space and in scale space in LES of premixed turbulent combustion. Given the complexity of the interaction between a flame and a complete range of turbulence eddy scales, we analyze reduced physics two-dimensional simulations of the interactions between single-scale vortex arrays and laminar premixed flames, with systematically increasing relative vortex strength creating higher complexity in flame corrugation. To characterize physical-scale space relationships, we apply the Fourier description using a newly developed procedure that removes the broadband Fourier spectral content associated with boundary discontinuities in the non-periodic directions of variables simulated within a finite domain without significant modification of the scales of interest in the original signals. This procedure allows for the analysis of any signal with the Fourier spectral decomposition regardless of the boundary conditions. Using Fourier-space filters, we identify characteristic coherent structural features concurrently in physical and Fourier space in response to flame-eddy interaction and their relative contributions to the SFS and RS variance content of the primary variables of interest. Momentum, energy and species concentrations display different distinct structural features that undergo systematic transition from weak to strong flame-vortex interactions. The primary variables within the dynamical system were classified based on the RS vs. SFS variance content, and distinct structural features in physical and Fourier space were identified for each class. We show that the SFS variance for all variables analyzed is associated with the SFS corrugated flame front, which in 2D Fourier space is associated with a coherent broadband "star-like" pattern that extends from the resolved to the flame subfilter scales. The directional dependences, magnitudes and phase relationships among the Fourier coefficients within the "legs" of the star reflect the power-law spectral representation of fronts and are shown to be closely connected with the direction and magnitude of flame-normal gradients of key variables within the corrugated flame front. We take advantage of the mathematical simplicity of the Fourier spectral description of the nonlinearities in the equations of motion to identify the dominant nonlinear couplings between SFS and RS fluctuations, and from these the SFS content involved in the dominant SFS-RS interactions. In Fourier space the nonlinear terms appear as sums of elemental scale interactions each of which have a well-defined geometrical relationship among wave vectors that form polygons in multidimensional Fourier space. Whereas the shape of the polygon is triangular within advective nonlinearities (triads), it is quadrangular for the chemical nonlinearities (quadrads). This elemental representation of key nonlinearities is used to develop a novel strategy to arrange and down-select the dominant nonlinear inter-scale couplings between SFS and RS motions, from which the corresponding SFS content associated with dynamically dominant RS-SFS dynamics are extracted. The procedure is applied to advective, triadic, and chemical, quadratic, nonlinearities within the LES-filtered governing equations. For primary variables that have most of its energy content at large scales and rapid drops in energy towards small scale, the large-scale features of the dynamically dominant SFS content are shown to be coupled with the smallest resolved scales leading to the corrugations and thickness of the RS flame front. In contrast, the dynamically dominant SFS content of intermediate species involved in heat release rate is shown to follow the smallest corrugations of the flame front reaction zone, which deviate from the RS flame centerline in regions with higher corrugations, such as the flame cusps. The distinct structural features of dynamically dominant SFS content are used for the development of simplified mathematical representations that could be applied within a modeling strategy that directly embeds the interaction between the modeled dominant SFS content and RS evolution within existing LES frameworks to improve the dynamical evolution of resolved-scale motions. From our analysis we develop a number of primary mathematical forms that encapsulate dominant SFS content of momentum, energy and key species variables within advective nonlinearities and show that these produce significant improvements in the time derivatives underlying evolution of the resolved scales. The analysis demonstrates the potential for incorporating directly key energetic and structural features of SFS that significantly impact the evolution of RS motions through key nonlinear dynamic couplings in LES frameworks employing highly simplified mathematical representations. This research lays the groundwork for a Galerkin-like modeling strategy that incorporates highly reduced numbers of basis functions that encapsulate previously determined dominant nonlinear couplings between subfilter-scale structure and resolved-scale evolution.