Forecasting and Analytics with the Augmented Dynamic Adaptive Model (ADAM)

Download Forecasting and Analytics with the Augmented Dynamic Adaptive Model (ADAM) PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000992713
Total Pages : 494 pages
Book Rating : 4.0/5 (9 download)

DOWNLOAD NOW!


Book Synopsis Forecasting and Analytics with the Augmented Dynamic Adaptive Model (ADAM) by : Ivan Svetunkov

Download or read book Forecasting and Analytics with the Augmented Dynamic Adaptive Model (ADAM) written by Ivan Svetunkov and published by CRC Press. This book was released on 2023-11-17 with total page 494 pages. Available in PDF, EPUB and Kindle. Book excerpt: Forecasting and Analytics with the Augmented Dynamic Adaptive Model (ADAM) focuses on a time series model in Single Source of Error state space form, called “ADAM” (Augmented Dynamic Adaptive Model). The book demonstrates a holistic view to forecasting and time series analysis using dynamic models, explaining how a variety of instruments can be used to solve real life problems. At the moment, there is no other tool in R or Python that would be able to model both intermittent and regular demand, would support both ETS and ARIMA, work with explanatory variables, be able to deal with multiple seasonalities (e.g. for hourly demand data) and have a support for automatic selection of orders, components and variables and provide tools for diagnostics and further improvement of the estimated model. ADAM can do all of that in one and the same framework. Given the rising interest in forecasting, ADAM, being able to do all those things, is a useful tool for data scientists, business analysts and machine learning experts who work with time series, as well as any researchers working in the area of dynamic models. Key Features: • It covers basics of forecasting, • It discusses ETS and ARIMA models, • It has chapters on extensions of ETS and ARIMA, including how to use explanatory variables and how to capture multiple frequencies, • It discusses intermittent demand and scale models for ETS, ARIMA and regression, • It covers diagnostics tools for ADAM and how to produce forecasts with it, • It does all of that with examples in R.

Complex-Valued Econometrics with Examples in R

Download Complex-Valued Econometrics with Examples in R PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031626087
Total Pages : 162 pages
Book Rating : 4.0/5 (316 download)

DOWNLOAD NOW!


Book Synopsis Complex-Valued Econometrics with Examples in R by : Sergey Svetunkov

Download or read book Complex-Valued Econometrics with Examples in R written by Sergey Svetunkov and published by Springer Nature. This book was released on with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Forecasting with Exponential Smoothing

Download Forecasting with Exponential Smoothing PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540719180
Total Pages : 362 pages
Book Rating : 4.5/5 (47 download)

DOWNLOAD NOW!


Book Synopsis Forecasting with Exponential Smoothing by : Rob Hyndman

Download or read book Forecasting with Exponential Smoothing written by Rob Hyndman and published by Springer Science & Business Media. This book was released on 2008-06-19 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: Exponential smoothing methods have been around since the 1950s, and are still the most popular forecasting methods used in business and industry. However, a modeling framework incorporating stochastic models, likelihood calculation, prediction intervals and procedures for model selection, was not developed until recently. This book brings together all of the important new results on the state space framework for exponential smoothing. It will be of interest to people wanting to apply the methods in their own area of interest as well as for researchers wanting to take the ideas in new directions. Part 1 provides an introduction to exponential smoothing and the underlying models. The essential details are given in Part 2, which also provide links to the most important papers in the literature. More advanced topics are covered in Part 3, including the mathematical properties of the models and extensions of the models for specific problems. Applications to particular domains are discussed in Part 4.

Intermittent Demand Forecasting

Download Intermittent Demand Forecasting PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119135303
Total Pages : 403 pages
Book Rating : 4.1/5 (191 download)

DOWNLOAD NOW!


Book Synopsis Intermittent Demand Forecasting by : John E. Boylan

Download or read book Intermittent Demand Forecasting written by John E. Boylan and published by John Wiley & Sons. This book was released on 2021-06-02 with total page 403 pages. Available in PDF, EPUB and Kindle. Book excerpt: INTERMITTENT DEMAND FORECASTING The first text to focus on the methods and approaches of intermittent, rather than fast, demand forecasting Intermittent Demand Forecasting is for anyone who is interested in improving forecasts of intermittent demand products, and enhancing the management of inventories. Whether you are a practitioner, at the sharp end of demand planning, a software designer, a student, an academic teaching operational research or operations management courses, or a researcher in this field, we hope that the book will inspire you to rethink demand forecasting. If you do so, then you can contribute towards significant economic and environmental benefits. No prior knowledge of intermittent demand forecasting or inventory management is assumed in this book. The key formulae are accompanied by worked examples to show how they can be implemented in practice. For those wishing to understand the theory in more depth, technical notes are provided at the end of each chapter, as well as an extensive and up-to-date collection of references for further study. Software developments are reviewed, to give an appreciation of the current state of the art in commercial and open source software. “Intermittent demand forecasting may seem like a specialized area but actually is at the center of sustainability efforts to consume less and to waste less. Boylan and Syntetos have done a superb job in showing how improvements in inventory management are pivotal in achieving this. Their book covers both the theory and practice of intermittent demand forecasting and my prediction is that it will fast become the bible of the field.” —Spyros Makridakis, Professor, University of Nicosia, and Director, Institute for the Future and the Makridakis Open Forecasting Center (MOFC). “We have been able to support our clients by adopting many of the ideas discussed in this excellent book, and implementing them in our software. I am sure that these ideas will be equally helpful for other supply chain software vendors and for companies wanting to update and upgrade their capabilities in forecasting and inventory management.” —Suresh Acharya, VP, Research and Development, Blue Yonder. “As product variants proliferate and the pace of business quickens, more and more items have intermittent demand. Boylan and Syntetos have long been leaders in extending forecasting and inventory methods to accommodate this new reality. Their book gathers and clarifies decades of research in this area, and explains how practitioners can exploit this knowledge to make their operations more efficient and effective.” —Thomas R. Willemain, Professor Emeritus, Rensselaer Polytechnic Institute.

Elements of Forecasting

Download Elements of Forecasting PDF Online Free

Author :
Publisher : South-Western Pub
ISBN 13 : 9780324359046
Total Pages : 366 pages
Book Rating : 4.3/5 (59 download)

DOWNLOAD NOW!


Book Synopsis Elements of Forecasting by : Francis X. Diebold

Download or read book Elements of Forecasting written by Francis X. Diebold and published by South-Western Pub. This book was released on 2007 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: ELEMENTARY FORECASTING focuses on the core techniques of widest applicability. The author illustrates all methods with detailed real-world applications, many of them international in flavor, designed to mimic typical forecasting situations.

Artificial Intelligence in Healthcare

Download Artificial Intelligence in Healthcare PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0128184396
Total Pages : 385 pages
Book Rating : 4.1/5 (281 download)

DOWNLOAD NOW!


Book Synopsis Artificial Intelligence in Healthcare by : Adam Bohr

Download or read book Artificial Intelligence in Healthcare written by Adam Bohr and published by Academic Press. This book was released on 2020-06-21 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data

Global Trends 2040

Download Global Trends 2040 PDF Online Free

Author :
Publisher : Cosimo Reports
ISBN 13 : 9781646794973
Total Pages : 158 pages
Book Rating : 4.7/5 (949 download)

DOWNLOAD NOW!


Book Synopsis Global Trends 2040 by : National Intelligence Council

Download or read book Global Trends 2040 written by National Intelligence Council and published by Cosimo Reports. This book was released on 2021-03 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt: "The ongoing COVID-19 pandemic marks the most significant, singular global disruption since World War II, with health, economic, political, and security implications that will ripple for years to come." -Global Trends 2040 (2021) Global Trends 2040-A More Contested World (2021), released by the US National Intelligence Council, is the latest report in its series of reports starting in 1997 about megatrends and the world's future. This report, strongly influenced by the COVID-19 pandemic, paints a bleak picture of the future and describes a contested, fragmented and turbulent world. It specifically discusses the four main trends that will shape tomorrow's world: - Demographics-by 2040, 1.4 billion people will be added mostly in Africa and South Asia. - Economics-increased government debt and concentrated economic power will escalate problems for the poor and middleclass. - Climate-a hotter world will increase water, food, and health insecurity. - Technology-the emergence of new technologies could both solve and cause problems for human life. Students of trends, policymakers, entrepreneurs, academics, journalists and anyone eager for a glimpse into the next decades, will find this report, with colored graphs, essential reading.

Forecasting in Financial and Sports Gambling Markets

Download Forecasting in Financial and Sports Gambling Markets PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118099532
Total Pages : 207 pages
Book Rating : 4.1/5 (18 download)

DOWNLOAD NOW!


Book Synopsis Forecasting in Financial and Sports Gambling Markets by : William S. Mallios

Download or read book Forecasting in Financial and Sports Gambling Markets written by William S. Mallios and published by John Wiley & Sons. This book was released on 2011-03-29 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: A guide to modeling analyses for financial and sports gambling markets, with a focus on major current events Addressing the highly competitive and risky environments of current-day financial and sports gambling markets, Forecasting in Financial and Sports Gambling Markets details the dynamic process of constructing effective forecasting rules based on both graphical patterns and adaptive drift modeling (ADM) of cointegrated time series. The book uniquely identifies periods of inefficiency that these markets oscillate through and develops profitable forecasting models that capitalize on irrational behavior exhibited during these periods. Providing valuable insights based on the author's firsthand experience, this book utilizes simple, yet unique, candlestick charts to identify optimal time periods in financial markets and optimal games in sports gambling markets for which forecasting models are likely to provide profitable trading and wagering outcomes. Featuring detailed examples that utilize actual data, the book addresses various topics that promote financial and mathematical literacy, including: Higher order ARMA processes in financial markets The effects of gambling shocks in sports gambling markets Cointegrated time series with model drift Modeling volatility Throughout the book, interesting real-world applications are presented, and numerous graphical procedures illustrate favorable trading and betting opportunities, which are accompanied by mathematical developments in adaptive model forecasting and risk assessment. A related web site features updated reviews in sports and financial forecasting and various links on the topic. Forecasting in Financial and Sports Gambling Markets is an excellent book for courses on financial economics and time series analysis at the upper-undergraduate and graduate levels. The book is also a valuable reference for researchers and practitioners working in the areas of retail markets, quant funds, hedge funds, and time series. Also, anyone with a general interest in learning about how to profit from the financial and sports gambling markets will find this book to be a valuable resource.

Macroeconomic Forecasting in the Era of Big Data

Download Macroeconomic Forecasting in the Era of Big Data PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030311503
Total Pages : 716 pages
Book Rating : 4.0/5 (33 download)

DOWNLOAD NOW!


Book Synopsis Macroeconomic Forecasting in the Era of Big Data by : Peter Fuleky

Download or read book Macroeconomic Forecasting in the Era of Big Data written by Peter Fuleky and published by Springer Nature. This book was released on 2019-11-28 with total page 716 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book surveys big data tools used in macroeconomic forecasting and addresses related econometric issues, including how to capture dynamic relationships among variables; how to select parsimonious models; how to deal with model uncertainty, instability, non-stationarity, and mixed frequency data; and how to evaluate forecasts, among others. Each chapter is self-contained with references, and provides solid background information, while also reviewing the latest advances in the field. Accordingly, the book offers a valuable resource for researchers, professional forecasters, and students of quantitative economics.

Big Data Analytics

Download Big Data Analytics PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3030047806
Total Pages : 429 pages
Book Rating : 4.0/5 (3 download)

DOWNLOAD NOW!


Book Synopsis Big Data Analytics by : Anirban Mondal

Download or read book Big Data Analytics written by Anirban Mondal and published by Springer. This book was released on 2018-12-11 with total page 429 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 6th International Conference on Big Data analytics, BDA 2018, held in Warangal, India, in December 2018. The 29 papers presented in this volume were carefully reviewed and selected from 93 submissions. The papers are organized in topical sections named: big data analytics: vision and perspectives; financial data analytics and data streams; web and social media data; big data systems and frameworks; predictive analytics in healthcare and agricultural domains; and machine learning and pattern mining.

Data Analytics in Reservoir Engineering

Download Data Analytics in Reservoir Engineering PDF Online Free

Author :
Publisher :
ISBN 13 : 9781613998205
Total Pages : 108 pages
Book Rating : 4.9/5 (982 download)

DOWNLOAD NOW!


Book Synopsis Data Analytics in Reservoir Engineering by : Sathish Sankaran

Download or read book Data Analytics in Reservoir Engineering written by Sathish Sankaran and published by . This book was released on 2020-10-29 with total page 108 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Analytics in Reservoir Engineering describes the relevance of data analytics for the oil and gas industry, with particular emphasis on reservoir engineering.

Practical Time Series Analysis

Download Practical Time Series Analysis PDF Online Free

Author :
Publisher : O'Reilly Media
ISBN 13 : 1492041629
Total Pages : 500 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Practical Time Series Analysis by : Aileen Nielsen

Download or read book Practical Time Series Analysis written by Aileen Nielsen and published by O'Reilly Media. This book was released on 2019-09-20 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: Time series data analysis is increasingly important due to the massive production of such data through the internet of things, the digitalization of healthcare, and the rise of smart cities. As continuous monitoring and data collection become more common, the need for competent time series analysis with both statistical and machine learning techniques will increase. Covering innovations in time series data analysis and use cases from the real world, this practical guide will help you solve the most common data engineering and analysis challengesin time series, using both traditional statistical and modern machine learning techniques. Author Aileen Nielsen offers an accessible, well-rounded introduction to time series in both R and Python that will have data scientists, software engineers, and researchers up and running quickly. You’ll get the guidance you need to confidently: Find and wrangle time series data Undertake exploratory time series data analysis Store temporal data Simulate time series data Generate and select features for a time series Measure error Forecast and classify time series with machine or deep learning Evaluate accuracy and performance

Dynamic Models for Volatility and Heavy Tails

Download Dynamic Models for Volatility and Heavy Tails PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107328780
Total Pages : 281 pages
Book Rating : 4.1/5 (73 download)

DOWNLOAD NOW!


Book Synopsis Dynamic Models for Volatility and Heavy Tails by : Andrew C. Harvey

Download or read book Dynamic Models for Volatility and Heavy Tails written by Andrew C. Harvey and published by Cambridge University Press. This book was released on 2013-04-22 with total page 281 pages. Available in PDF, EPUB and Kindle. Book excerpt: The volatility of financial returns changes over time and, for the last thirty years, Generalized Autoregressive Conditional Heteroscedasticity (GARCH) models have provided the principal means of analyzing, modeling and monitoring such changes. Taking into account that financial returns typically exhibit heavy tails - that is, extreme values can occur from time to time - Andrew Harvey's new book shows how a small but radical change in the way GARCH models are formulated leads to a resolution of many of the theoretical problems inherent in the statistical theory. The approach can also be applied to other aspects of volatility. The more general class of Dynamic Conditional Score models extends to robust modeling of outliers in the levels of time series and to the treatment of time-varying relationships. The statistical theory draws on basic principles of maximum likelihood estimation and, by doing so, leads to an elegant and unified treatment of nonlinear time-series modeling.

Time Series Analysis by State Space Methods

Download Time Series Analysis by State Space Methods PDF Online Free

Author :
Publisher : Oxford University Press
ISBN 13 : 9780198523543
Total Pages : 280 pages
Book Rating : 4.5/5 (235 download)

DOWNLOAD NOW!


Book Synopsis Time Series Analysis by State Space Methods by : James Durbin

Download or read book Time Series Analysis by State Space Methods written by James Durbin and published by Oxford University Press. This book was released on 2001-06-21 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: State space time series analysis emerged in the 1960s in engineering, but its applications have spread to other fields. Durbin (statistics, London School of Economics and Political Science) and Koopman (econometrics, Free U., Amsterdam) extol the virtues of such models over the main analytical system currently used for time series data, Box-Jenkins' ARIMA. What distinguishes state space time models is that they separately model components such as trend, seasonal, regression elements and disturbance terms. Part I focuses on traditional and new techniques based on the linear Gaussian model. Part II presents new material extending the state space model to non-Gaussian observations. c. Book News Inc.

Market Response Models

Download Market Response Models PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0306475944
Total Pages : 507 pages
Book Rating : 4.3/5 (64 download)

DOWNLOAD NOW!


Book Synopsis Market Response Models by : Dominique M. Hanssens

Download or read book Market Response Models written by Dominique M. Hanssens and published by Springer Science & Business Media. This book was released on 2005-12-19 with total page 507 pages. Available in PDF, EPUB and Kindle. Book excerpt: From 1976 to the beginning of the millennium—covering the quarter-century life span of this book and its predecessor—something remarkable has happened to market response research: it has become practice. Academics who teach in professional fields, like we do, dream of such things. Imagine the satisfaction of knowing that your work has been incorporated into the decision-making routine of brand managers, that category management relies on techniques you developed, that marketing management believes in something you struggled to establish in their minds. It’s not just us that we are talking about. This pride must be shared by all of the researchers who pioneered the simple concept that the determinants of sales could be found if someone just looked for them. Of course, economists had always studied demand. But the project of extending demand analysis would fall to marketing researchers, now called marketing scientists for good reason, who saw that in reality the marketing mix was more than price; it was advertising, sales force effort, distribution, promotion, and every other decision variable that potentially affected sales. The bibliography of this book supports the notion that the academic research in marketing led the way. The journey was difficult, sometimes halting, but ultimately market response research advanced and then insinuated itself into the fabric of modern management.

Gaussian Processes for Machine Learning

Download Gaussian Processes for Machine Learning PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 026218253X
Total Pages : 266 pages
Book Rating : 4.2/5 (621 download)

DOWNLOAD NOW!


Book Synopsis Gaussian Processes for Machine Learning by : Carl Edward Rasmussen

Download or read book Gaussian Processes for Machine Learning written by Carl Edward Rasmussen and published by MIT Press. This book was released on 2005-11-23 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive and self-contained introduction to Gaussian processes, which provide a principled, practical, probabilistic approach to learning in kernel machines. Gaussian processes (GPs) provide a principled, practical, probabilistic approach to learning in kernel machines. GPs have received increased attention in the machine-learning community over the past decade, and this book provides a long-needed systematic and unified treatment of theoretical and practical aspects of GPs in machine learning. The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics. The book deals with the supervised-learning problem for both regression and classification, and includes detailed algorithms. A wide variety of covariance (kernel) functions are presented and their properties discussed. Model selection is discussed both from a Bayesian and a classical perspective. Many connections to other well-known techniques from machine learning and statistics are discussed, including support-vector machines, neural networks, splines, regularization networks, relevance vector machines and others. Theoretical issues including learning curves and the PAC-Bayesian framework are treated, and several approximation methods for learning with large datasets are discussed. The book contains illustrative examples and exercises, and code and datasets are available on the Web. Appendixes provide mathematical background and a discussion of Gaussian Markov processes.

Financial Statistics and Data Analytics

Download Financial Statistics and Data Analytics PDF Online Free

Author :
Publisher : MDPI
ISBN 13 : 3039439758
Total Pages : 232 pages
Book Rating : 4.0/5 (394 download)

DOWNLOAD NOW!


Book Synopsis Financial Statistics and Data Analytics by : Shuangzhe Li

Download or read book Financial Statistics and Data Analytics written by Shuangzhe Li and published by MDPI. This book was released on 2021-03-02 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern financial management is largely about risk management, which is increasingly data-driven. The problem is how to extract information from the data overload. It is here that advanced statistical and machine learning techniques can help. Accordingly, finance, statistics, and data analytics go hand in hand. The purpose of this book is to bring the state-of-art research in these three areas to the fore and especially research that juxtaposes these three.