Efficient Processing of Deep Neural Networks

Download Efficient Processing of Deep Neural Networks PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031017668
Total Pages : 254 pages
Book Rating : 4.0/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Efficient Processing of Deep Neural Networks by : Vivienne Sze

Download or read book Efficient Processing of Deep Neural Networks written by Vivienne Sze and published by Springer Nature. This book was released on 2022-05-31 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a structured treatment of the key principles and techniques for enabling efficient processing of deep neural networks (DNNs). DNNs are currently widely used for many artificial intelligence (AI) applications, including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Therefore, techniques that enable efficient processing of deep neural networks to improve key metrics—such as energy-efficiency, throughput, and latency—without sacrificing accuracy or increasing hardware costs are critical to enabling the wide deployment of DNNs in AI systems. The book includes background on DNN processing; a description and taxonomy of hardware architectural approaches for designing DNN accelerators; key metrics for evaluating and comparing different designs; features of DNN processing that are amenable to hardware/algorithm co-design to improve energy efficiency and throughput; and opportunities for applying new technologies. Readers will find a structured introduction to the field as well as formalization and organization of key concepts from contemporary work that provide insights that may spark new ideas.

Learning in Energy-Efficient Neuromorphic Computing: Algorithm and Architecture Co-Design

Download Learning in Energy-Efficient Neuromorphic Computing: Algorithm and Architecture Co-Design PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119507391
Total Pages : 300 pages
Book Rating : 4.1/5 (195 download)

DOWNLOAD NOW!


Book Synopsis Learning in Energy-Efficient Neuromorphic Computing: Algorithm and Architecture Co-Design by : Nan Zheng

Download or read book Learning in Energy-Efficient Neuromorphic Computing: Algorithm and Architecture Co-Design written by Nan Zheng and published by John Wiley & Sons. This book was released on 2019-10-18 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explains current co-design and co-optimization methodologies for building hardware neural networks and algorithms for machine learning applications This book focuses on how to build energy-efficient hardware for neural networks with learning capabilities—and provides co-design and co-optimization methodologies for building hardware neural networks that can learn. Presenting a complete picture from high-level algorithm to low-level implementation details, Learning in Energy-Efficient Neuromorphic Computing: Algorithm and Architecture Co-Design also covers many fundamentals and essentials in neural networks (e.g., deep learning), as well as hardware implementation of neural networks. The book begins with an overview of neural networks. It then discusses algorithms for utilizing and training rate-based artificial neural networks. Next comes an introduction to various options for executing neural networks, ranging from general-purpose processors to specialized hardware, from digital accelerator to analog accelerator. A design example on building energy-efficient accelerator for adaptive dynamic programming with neural networks is also presented. An examination of fundamental concepts and popular learning algorithms for spiking neural networks follows that, along with a look at the hardware for spiking neural networks. Then comes a chapter offering readers three design examples (two of which are based on conventional CMOS, and one on emerging nanotechnology) to implement the learning algorithm found in the previous chapter. The book concludes with an outlook on the future of neural network hardware. Includes cross-layer survey of hardware accelerators for neuromorphic algorithms Covers the co-design of architecture and algorithms with emerging devices for much-improved computing efficiency Focuses on the co-design of algorithms and hardware, which is especially critical for using emerging devices, such as traditional memristors or diffusive memristors, for neuromorphic computing Learning in Energy-Efficient Neuromorphic Computing: Algorithm and Architecture Co-Design is an ideal resource for researchers, scientists, software engineers, and hardware engineers dealing with the ever-increasing requirement on power consumption and response time. It is also excellent for teaching and training undergraduate and graduate students about the latest generation neural networks with powerful learning capabilities.

Machine Learning in VLSI Computer-Aided Design

Download Machine Learning in VLSI Computer-Aided Design PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3030046664
Total Pages : 697 pages
Book Rating : 4.0/5 (3 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning in VLSI Computer-Aided Design by : Ibrahim (Abe) M. Elfadel

Download or read book Machine Learning in VLSI Computer-Aided Design written by Ibrahim (Abe) M. Elfadel and published by Springer. This book was released on 2019-03-15 with total page 697 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides readers with an up-to-date account of the use of machine learning frameworks, methodologies, algorithms and techniques in the context of computer-aided design (CAD) for very-large-scale integrated circuits (VLSI). Coverage includes the various machine learning methods used in lithography, physical design, yield prediction, post-silicon performance analysis, reliability and failure analysis, power and thermal analysis, analog design, logic synthesis, verification, and neuromorphic design. Provides up-to-date information on machine learning in VLSI CAD for device modeling, layout verifications, yield prediction, post-silicon validation, and reliability; Discusses the use of machine learning techniques in the context of analog and digital synthesis; Demonstrates how to formulate VLSI CAD objectives as machine learning problems and provides a comprehensive treatment of their efficient solutions; Discusses the tradeoff between the cost of collecting data and prediction accuracy and provides a methodology for using prior data to reduce cost of data collection in the design, testing and validation of both analog and digital VLSI designs. From the Foreword As the semiconductor industry embraces the rising swell of cognitive systems and edge intelligence, this book could serve as a harbinger and example of the osmosis that will exist between our cognitive structures and methods, on the one hand, and the hardware architectures and technologies that will support them, on the other....As we transition from the computing era to the cognitive one, it behooves us to remember the success story of VLSI CAD and to earnestly seek the help of the invisible hand so that our future cognitive systems are used to design more powerful cognitive systems. This book is very much aligned with this on-going transition from computing to cognition, and it is with deep pleasure that I recommend it to all those who are actively engaged in this exciting transformation. Dr. Ruchir Puri, IBM Fellow, IBM Watson CTO & Chief Architect, IBM T. J. Watson Research Center

On-Chip Training NPU - Algorithm, Architecture and SoC Design

Download On-Chip Training NPU - Algorithm, Architecture and SoC Design PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031342372
Total Pages : 249 pages
Book Rating : 4.0/5 (313 download)

DOWNLOAD NOW!


Book Synopsis On-Chip Training NPU - Algorithm, Architecture and SoC Design by : Donghyeon Han

Download or read book On-Chip Training NPU - Algorithm, Architecture and SoC Design written by Donghyeon Han and published by Springer Nature. This book was released on 2023-08-28 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unlike most available sources that focus on deep neural network (DNN) inference, this book provides readers with a single-source reference on the needs, requirements, and challenges involved with on-device, DNN training semiconductor and SoC design. The authors include coverage of the trends and history surrounding the development of on-device DNN training, as well as on-device training semiconductors and SoC design examples to facilitate understanding.

Hardware Accelerator Systems for Artificial Intelligence and Machine Learning

Download Hardware Accelerator Systems for Artificial Intelligence and Machine Learning PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0128231246
Total Pages : 416 pages
Book Rating : 4.1/5 (282 download)

DOWNLOAD NOW!


Book Synopsis Hardware Accelerator Systems for Artificial Intelligence and Machine Learning by :

Download or read book Hardware Accelerator Systems for Artificial Intelligence and Machine Learning written by and published by Academic Press. This book was released on 2021-03-28 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hardware Accelerator Systems for Artificial Intelligence and Machine Learning, Volume 122 delves into arti?cial Intelligence and the growth it has seen with the advent of Deep Neural Networks (DNNs) and Machine Learning. Updates in this release include chapters on Hardware accelerator systems for artificial intelligence and machine learning, Introduction to Hardware Accelerator Systems for Artificial Intelligence and Machine Learning, Deep Learning with GPUs, Edge Computing Optimization of Deep Learning Models for Specialized Tensor Processing Architectures, Architecture of NPU for DNN, Hardware Architecture for Convolutional Neural Network for Image Processing, FPGA based Neural Network Accelerators, and much more. - Updates on new information on the architecture of GPU, NPU and DNN - Discusses In-memory computing, Machine intelligence and Quantum computing - Includes sections on Hardware Accelerator Systems to improve processing efficiency and performance

High Energy Efficiency Neural Network Processor with Combined Digital and Computing-in-Memory Architecture

Download High Energy Efficiency Neural Network Processor with Combined Digital and Computing-in-Memory Architecture PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9819734770
Total Pages : 128 pages
Book Rating : 4.8/5 (197 download)

DOWNLOAD NOW!


Book Synopsis High Energy Efficiency Neural Network Processor with Combined Digital and Computing-in-Memory Architecture by : Jinshan Yue

Download or read book High Energy Efficiency Neural Network Processor with Combined Digital and Computing-in-Memory Architecture written by Jinshan Yue and published by Springer Nature. This book was released on with total page 128 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Embedded Artificial Intelligence

Download Embedded Artificial Intelligence PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000881911
Total Pages : 143 pages
Book Rating : 4.0/5 (8 download)

DOWNLOAD NOW!


Book Synopsis Embedded Artificial Intelligence by : Ovidiu Vermesan

Download or read book Embedded Artificial Intelligence written by Ovidiu Vermesan and published by CRC Press. This book was released on 2023-05-05 with total page 143 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent technological developments in sensors, edge computing, connectivity, and artificial intelligence (AI) technologies have accelerated the integration of data analysis based on embedded AI capabilities into resource-constrained, energy-efficient hardware devices for processing information at the network edge. Embedded AI combines embedded machine learning (ML) and deep learning (DL) based on neural networks (NN) architectures such as convolutional NN (CNN), or spiking neural network (SNN) and algorithms on edge devices and implements edge computing capabilities that enable data processing and analysis without optimised connectivity and integration, allowing users to access data from various sources. Embedded AI efficiently implements edge computing and AI processes on resource-constrained devices to mitigate downtime and service latency, and it successfully merges AI processes as a pivotal component in edge computing and embedded system devices. Embedded AI also enables users to reduce costs, communication, and processing time by assembling data and by supporting user requirements without the need for continuous interaction with physical locations. This book provides an overview of the latest research results and activities in industrial embedded AI technologies and applications, based on close cooperation between three large-scale ECSEL JU projects, AI4DI, ANDANTE, and TEMPO. The book’s content targets researchers, designers, developers, academics, post-graduate students and practitioners seeking recent research on embedded AI. It combines the latest developments in embedded AI, addressing methodologies, tools, and techniques to offer insight into technological trends and their use across different industries.

VLSI and Hardware Implementations using Modern Machine Learning Methods

Download VLSI and Hardware Implementations using Modern Machine Learning Methods PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000523845
Total Pages : 292 pages
Book Rating : 4.0/5 (5 download)

DOWNLOAD NOW!


Book Synopsis VLSI and Hardware Implementations using Modern Machine Learning Methods by : Sandeep Saini

Download or read book VLSI and Hardware Implementations using Modern Machine Learning Methods written by Sandeep Saini and published by CRC Press. This book was released on 2021-12-31 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine learning is a potential solution to resolve bottleneck issues in VLSI via optimizing tasks in the design process. This book aims to provide the latest machine-learning–based methods, algorithms, architectures, and frameworks designed for VLSI design. The focus is on digital, analog, and mixed-signal design techniques, device modeling, physical design, hardware implementation, testability, reconfigurable design, synthesis and verification, and related areas. Chapters include case studies as well as novel research ideas in the given field. Overall, the book provides practical implementations of VLSI design, IC design, and hardware realization using machine learning techniques. Features: Provides the details of state-of-the-art machine learning methods used in VLSI design Discusses hardware implementation and device modeling pertaining to machine learning algorithms Explores machine learning for various VLSI architectures and reconfigurable computing Illustrates the latest techniques for device size and feature optimization Highlights the latest case studies and reviews of the methods used for hardware implementation This book is aimed at researchers, professionals, and graduate students in VLSI, machine learning, electrical and electronic engineering, computer engineering, and hardware systems.

Domain-Specific Computer Architectures for Emerging Applications

Download Domain-Specific Computer Architectures for Emerging Applications PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1040031986
Total Pages : 417 pages
Book Rating : 4.0/5 (4 download)

DOWNLOAD NOW!


Book Synopsis Domain-Specific Computer Architectures for Emerging Applications by : Chao Wang

Download or read book Domain-Specific Computer Architectures for Emerging Applications written by Chao Wang and published by CRC Press. This book was released on 2024-06-04 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the end of Moore’s Law, domain-specific architecture (DSA) has become a crucial mode of implementing future computing architectures. This book discusses the system-level design methodology of DSAs and their applications, providing a unified design process that guarantees functionality, performance, energy efficiency, and real-time responsiveness for the target application. DSAs often start from domain-specific algorithms or applications, analyzing the characteristics of algorithmic applications, such as computation, memory access, and communication, and proposing the heterogeneous accelerator architecture suitable for that particular application. This book places particular focus on accelerator hardware platforms and distributed systems for various novel applications, such as machine learning, data mining, neural networks, and graph algorithms, and also covers RISC-V open-source instruction sets. It briefly describes the system design methodology based on DSAs and presents the latest research results in academia around domain-specific acceleration architectures. Providing cutting-edge discussion of big data and artificial intelligence scenarios in contemporary industry and typical DSA applications, this book appeals to industry professionals as well as academicians researching the future of computing in these areas.

Deep Learning in Computer Vision

Download Deep Learning in Computer Vision PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1351003801
Total Pages : 275 pages
Book Rating : 4.3/5 (51 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning in Computer Vision by : Mahmoud Hassaballah

Download or read book Deep Learning in Computer Vision written by Mahmoud Hassaballah and published by CRC Press. This book was released on 2020-03-23 with total page 275 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep learning algorithms have brought a revolution to the computer vision community by introducing non-traditional and efficient solutions to several image-related problems that had long remained unsolved or partially addressed. This book presents a collection of eleven chapters where each individual chapter explains the deep learning principles of a specific topic, introduces reviews of up-to-date techniques, and presents research findings to the computer vision community. The book covers a broad scope of topics in deep learning concepts and applications such as accelerating the convolutional neural network inference on field-programmable gate arrays, fire detection in surveillance applications, face recognition, action and activity recognition, semantic segmentation for autonomous driving, aerial imagery registration, robot vision, tumor detection, and skin lesion segmentation as well as skin melanoma classification. The content of this book has been organized such that each chapter can be read independently from the others. The book is a valuable companion for researchers, for postgraduate and possibly senior undergraduate students who are taking an advanced course in related topics, and for those who are interested in deep learning with applications in computer vision, image processing, and pattern recognition.

Circuits and Systems Advances in Near Threshold Computing

Download Circuits and Systems Advances in Near Threshold Computing PDF Online Free

Author :
Publisher : MDPI
ISBN 13 : 3036507205
Total Pages : 120 pages
Book Rating : 4.0/5 (365 download)

DOWNLOAD NOW!


Book Synopsis Circuits and Systems Advances in Near Threshold Computing by : Sanghamitra Roy

Download or read book Circuits and Systems Advances in Near Threshold Computing written by Sanghamitra Roy and published by MDPI. This book was released on 2021-05-11 with total page 120 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern society is witnessing a sea change in ubiquitous computing, in which people have embraced computing systems as an indispensable part of day-to-day existence. Computation, storage, and communication abilities of smartphones, for example, have undergone monumental changes over the past decade. However, global emphasis on creating and sustaining green environments is leading to a rapid and ongoing proliferation of edge computing systems and applications. As a broad spectrum of healthcare, home, and transport applications shift to the edge of the network, near-threshold computing (NTC) is emerging as one of the promising low-power computing platforms. An NTC device sets its supply voltage close to its threshold voltage, dramatically reducing the energy consumption. Despite showing substantial promise in terms of energy efficiency, NTC is yet to see widescale commercial adoption. This is because circuits and systems operating with NTC suffer from several problems, including increased sensitivity to process variation, reliability problems, performance degradation, and security vulnerabilities, to name a few. To realize its potential, we need designs, techniques, and solutions to overcome these challenges associated with NTC circuits and systems. The readers of this book will be able to familiarize themselves with recent advances in electronics systems, focusing on near-threshold computing.

Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing

Download Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031399323
Total Pages : 481 pages
Book Rating : 4.0/5 (313 download)

DOWNLOAD NOW!


Book Synopsis Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing by : Sudeep Pasricha

Download or read book Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing written by Sudeep Pasricha and published by Springer Nature. This book was released on 2023-10-09 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents recent advances towards the goal of enabling efficient implementation of machine learning models on resource-constrained systems, covering different application domains. The focus is on presenting interesting and new use cases of applying machine learning to innovative application domains, exploring the efficient hardware design of efficient machine learning accelerators, memory optimization techniques, illustrating model compression and neural architecture search techniques for energy-efficient and fast execution on resource-constrained hardware platforms, and understanding hardware-software codesign techniques for achieving even greater energy, reliability, and performance benefits. Discusses efficient implementation of machine learning in embedded, CPS, IoT, and edge computing; Offers comprehensive coverage of hardware design, software design, and hardware/software co-design and co-optimization; Describes real applications to demonstrate how embedded, CPS, IoT, and edge applications benefit from machine learning.

Neuromorphic Computing

Download Neuromorphic Computing PDF Online Free

Author :
Publisher : BoD – Books on Demand
ISBN 13 : 1803561432
Total Pages : 298 pages
Book Rating : 4.8/5 (35 download)

DOWNLOAD NOW!


Book Synopsis Neuromorphic Computing by :

Download or read book Neuromorphic Computing written by and published by BoD – Books on Demand. This book was released on 2023-11-15 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dive into the cutting-edge world of Neuromorphic Computing, a groundbreaking volume that unravels the secrets of brain-inspired computational paradigms. Spanning neuroscience, artificial intelligence, and hardware design, this book presents a comprehensive exploration of neuromorphic systems, empowering both experts and newcomers to embrace the limitless potential of brain-inspired computing. Discover the fundamental principles that underpin neural computation as we journey through the origins of neuromorphic architectures, meticulously crafted to mimic the brain’s intricate neural networks. Unlock the true essence of learning mechanisms – unsupervised, supervised, and reinforcement learning – and witness how these innovations are shaping the future of artificial intelligence.

Hardware for Artificial Intelligence

Download Hardware for Artificial Intelligence PDF Online Free

Author :
Publisher : Frontiers Media SA
ISBN 13 : 2889763986
Total Pages : 229 pages
Book Rating : 4.8/5 (897 download)

DOWNLOAD NOW!


Book Synopsis Hardware for Artificial Intelligence by : Alexantrou Serb

Download or read book Hardware for Artificial Intelligence written by Alexantrou Serb and published by Frontiers Media SA. This book was released on 2022-09-26 with total page 229 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Compact and Fast Machine Learning Accelerator for IoT Devices

Download Compact and Fast Machine Learning Accelerator for IoT Devices PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9811333238
Total Pages : 157 pages
Book Rating : 4.8/5 (113 download)

DOWNLOAD NOW!


Book Synopsis Compact and Fast Machine Learning Accelerator for IoT Devices by : Hantao Huang

Download or read book Compact and Fast Machine Learning Accelerator for IoT Devices written by Hantao Huang and published by Springer. This book was released on 2018-12-07 with total page 157 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the latest techniques for machine learning based data analytics on IoT edge devices. A comprehensive literature review on neural network compression and machine learning accelerator is presented from both algorithm level optimization and hardware architecture optimization. Coverage focuses on shallow and deep neural network with real applications on smart buildings. The authors also discuss hardware architecture design with coverage focusing on both CMOS based computing systems and the new emerging Resistive Random-Access Memory (RRAM) based systems. Detailed case studies such as indoor positioning, energy management and intrusion detection are also presented for smart buildings.

Silicon Photonics for High-Performance Computing and Beyond

Download Silicon Photonics for High-Performance Computing and Beyond PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000480119
Total Pages : 408 pages
Book Rating : 4.0/5 (4 download)

DOWNLOAD NOW!


Book Synopsis Silicon Photonics for High-Performance Computing and Beyond by : Mahdi Nikdast

Download or read book Silicon Photonics for High-Performance Computing and Beyond written by Mahdi Nikdast and published by CRC Press. This book was released on 2021-11-17 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: Silicon photonics is beginning to play an important role in driving innovations in communication and computation for an increasing number of applications, from health care and biomedical sensors to autonomous driving, datacenter networking, and security. In recent years, there has been a significant amount of effort in industry and academia to innovate, design, develop, analyze, optimize, and fabricate systems employing silicon photonics, shaping the future of not only Datacom and telecom technology but also high-performance computing and emerging computing paradigms, such as optical computing and artificial intelligence. Different from existing books in this area, Silicon Photonics for High-Performance Computing and Beyond presents a comprehensive overview of the current state-of-the-art technology and research achievements in applying silicon photonics for communication and computation. It focuses on various design, development, and integration challenges, reviews the latest advances spanning materials, devices, circuits, systems, and applications. Technical topics discussed in the book include: • Requirements and the latest advances in high-performance computing systems • Device- and system-level challenges and latest improvements to deploy silicon photonics in computing systems • Novel design solutions and design automation techniques for silicon photonic integrated circuits • Novel materials, devices, and photonic integrated circuits on silicon • Emerging computing technologies and applications based on silicon photonics Silicon Photonics for High-Performance Computing and Beyond presents a compilation of 19 outstanding contributions from academic and industry pioneers in the field. The selected contributions present insightful discussions and innovative approaches to understand current and future bottlenecks in high-performance computing systems and traditional computing platforms, and the promise of silicon photonics to address those challenges. It is ideal for researchers and engineers working in the photonics, electrical, and computer engineering industries as well as academic researchers and graduate students (M.S. and Ph.D.) in computer science and engineering, electronic and electrical engineering, applied physics, photonics, and optics.

Approximate Circuits

Download Approximate Circuits PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319993224
Total Pages : 495 pages
Book Rating : 4.3/5 (199 download)

DOWNLOAD NOW!


Book Synopsis Approximate Circuits by : Sherief Reda

Download or read book Approximate Circuits written by Sherief Reda and published by Springer. This book was released on 2018-12-05 with total page 495 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides readers with a comprehensive, state-of-the-art overview of approximate computing, enabling the design trade-off of accuracy for achieving better power/performance efficiencies, through the simplification of underlying computing resources. The authors describe in detail various efforts to generate approximate hardware systems, while still providing an overview of support techniques at other computing layers. The book is organized by techniques for various hardware components, from basic building blocks to general circuits and systems.