Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Elementary Theory Of Equations Scholars Choice Edition
Download Elementary Theory Of Equations Scholars Choice Edition full books in PDF, epub, and Kindle. Read online Elementary Theory Of Equations Scholars Choice Edition ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Elementary Theory of Equations - Scholar's Choice Edition by : Leonard Eugene Dickson
Download or read book Elementary Theory of Equations - Scholar's Choice Edition written by Leonard Eugene Dickson and published by Scholar's Choice. This book was released on 2015-02-18 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Book Synopsis From Elementary Probability to Stochastic Differential Equations with MAPLE® by : Sasha Cyganowski
Download or read book From Elementary Probability to Stochastic Differential Equations with MAPLE® written by Sasha Cyganowski and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an introduction to probabilistic and statistical concepts necessary to understand the basic ideas and methods of stochastic differential equations. Based on measure theory, which is introduced as smoothly as possible, it provides practical skills in the use of MAPLE in the context of probability and its applications. It offers to graduates and advanced undergraduates an overview and intuitive background for more advanced studies.
Book Synopsis Solving the Pell Equation by : Michael Jacobson
Download or read book Solving the Pell Equation written by Michael Jacobson and published by Springer Science & Business Media. This book was released on 2008-12-02 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt: Pell’s Equation is a very simple Diophantine equation that has been known to mathematicians for over 2000 years. Even today research involving this equation continues to be very active, as can be seen by the publication of at least 150 articles related to this equation over the past decade. However, very few modern books have been published on Pell’s Equation, and this will be the first to give a historical development of the equation, as well as to develop the necessary tools for solving the equation. The authors provide a friendly introduction for advanced undergraduates to the delights of algebraic number theory via Pell’s Equation. The only prerequisites are a basic knowledge of elementary number theory and abstract algebra. There are also numerous references and notes for those who wish to follow up on various topics.
Book Synopsis Equations and Inequalities by : Jiri Herman
Download or read book Equations and Inequalities written by Jiri Herman and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 353 pages. Available in PDF, EPUB and Kindle. Book excerpt: A look at solving problems in three areas of classical elementary mathematics: equations and systems of equations of various kinds, algebraic inequalities, and elementary number theory, in particular divisibility and diophantine equations. In each topic, brief theoretical discussions are followed by carefully worked out examples of increasing difficulty, and by exercises which range from routine to rather more challenging problems. While it emphasizes some methods that are not usually covered in beginning university courses, the book nevertheless teaches techniques and skills which are useful beyond the specific topics covered here. With approximately 330 examples and 760 exercises.
Book Synopsis A Book of Abstract Algebra by : Charles C Pinter
Download or read book A Book of Abstract Algebra written by Charles C Pinter and published by Courier Corporation. This book was released on 2010-01-14 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Accessible but rigorous, this outstanding text encompasses all of the topics covered by a typical course in elementary abstract algebra. Its easy-to-read treatment offers an intuitive approach, featuring informal discussions followed by thematically arranged exercises. This second edition features additional exercises to improve student familiarity with applications. 1990 edition.
Book Synopsis Theory of Functional Differential Equations by : Jack K. Hale
Download or read book Theory of Functional Differential Equations written by Jack K. Hale and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the publication of my lecture notes, Functional Differential Equations in the Applied Mathematical Sciences series, many new developments have occurred. As a consequence, it was decided not to make a few corrections and additions for a second edition of those notes, but to present a more compre hensive theory. The present work attempts to consolidate those elements of the theory which have stabilized and also to include recent directions of research. The following chapters were not discussed in my original notes. Chapter 1 is an elementary presentation of linear differential difference equations with constant coefficients of retarded and neutral type. Chapter 4 develops the recent theory of dissipative systems. Chapter 9 is a new chapter on perturbed systems. Chapter 11 is a new presentation incorporating recent results on the existence of periodic solutions of autonomous equations. Chapter 12 is devoted entirely to neutral equations. Chapter 13 gives an introduction to the global and generic theory. There is also an appendix on the location of the zeros of characteristic polynomials. The remainder of the material has been completely revised and updated with the most significant changes occurring in Chapter 3 on the properties of solutions, Chapter 5 on stability, and Chapter lOon behavior near a periodic orbit.
Book Synopsis Partial Differential Equations in Action by : Sandro Salsa
Download or read book Partial Differential Equations in Action written by Sandro Salsa and published by Springer. This book was released on 2015-04-24 with total page 714 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is intended as an advanced undergraduate or first-year graduate course for students from various disciplines, including applied mathematics, physics and engineering. It has evolved from courses offered on partial differential equations (PDEs) over the last several years at the Politecnico di Milano. These courses had a twofold purpose: on the one hand, to teach students to appreciate the interplay between theory and modeling in problems arising in the applied sciences, and on the other to provide them with a solid theoretical background in numerical methods, such as finite elements. Accordingly, this textbook is divided into two parts. The first part, chapters 2 to 5, is more elementary in nature and focuses on developing and studying basic problems from the macro-areas of diffusion, propagation and transport, waves and vibrations. In turn the second part, chapters 6 to 11, concentrates on the development of Hilbert spaces methods for the variational formulation and the analysis of (mainly) linear boundary and initial-boundary value problems.
Book Synopsis Direct Methods in the Theory of Elliptic Equations by : Jindrich Necas
Download or read book Direct Methods in the Theory of Elliptic Equations written by Jindrich Necas and published by Springer Science & Business Media. This book was released on 2011-10-06 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nečas’ book Direct Methods in the Theory of Elliptic Equations, published 1967 in French, has become a standard reference for the mathematical theory of linear elliptic equations and systems. This English edition, translated by G. Tronel and A. Kufner, presents Nečas’ work essentially in the form it was published in 1967. It gives a timeless and in some sense definitive treatment of a number issues in variational methods for elliptic systems and higher order equations. The text is recommended to graduate students of partial differential equations, postdoctoral associates in Analysis, and scientists working with linear elliptic systems. In fact, any researcher using the theory of elliptic systems will benefit from having the book in his library. The volume gives a self-contained presentation of the elliptic theory based on the "direct method", also known as the variational method. Due to its universality and close connections to numerical approximations, the variational method has become one of the most important approaches to the elliptic theory. The method does not rely on the maximum principle or other special properties of the scalar second order elliptic equations, and it is ideally suited for handling systems of equations of arbitrary order. The prototypical examples of equations covered by the theory are, in addition to the standard Laplace equation, Lame’s system of linear elasticity and the biharmonic equation (both with variable coefficients, of course). General ellipticity conditions are discussed and most of the natural boundary condition is covered. The necessary foundations of the function space theory are explained along the way, in an arguably optimal manner. The standard boundary regularity requirement on the domains is the Lipschitz continuity of the boundary, which "when going beyond the scalar equations of second order" turns out to be a very natural class. These choices reflect the author's opinion that the Lame system and the biharmonic equations are just as important as the Laplace equation, and that the class of the domains with the Lipschitz continuous boundary (as opposed to smooth domains) is the most natural class of domains to consider in connection with these equations and their applications.
Book Synopsis Principles and Practice of Structural Equation Modeling by : Rex B. Kline
Download or read book Principles and Practice of Structural Equation Modeling written by Rex B. Kline and published by Guilford Publications. This book was released on 2015-10-08 with total page 554 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book has been replaced by Principles and Practice of Structural Equation Modeling, Fifth Edition, ISBN 978-1-4625-5191-0.
Book Synopsis Galois’ Dream: Group Theory and Differential Equations by : Michio Kuga
Download or read book Galois’ Dream: Group Theory and Differential Equations written by Michio Kuga and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 147 pages. Available in PDF, EPUB and Kindle. Book excerpt: First year, undergraduate, mathematics students in Japan have for many years had the opportunity of a unique experience---an introduction, at an elementary level, to some very advanced ideas in mathematics from one of the leading mathematicians of the world. English reading students now have the opportunity to enjoy this lively presentation, from elementary ideas to cartoons to funny examples, and to follow the mind of an imaginative and creative mathematician into a world of enduring mathematical creations.
Book Synopsis Elementary Differential Equations and Boundary Value Problems by : William E. Boyce
Download or read book Elementary Differential Equations and Boundary Value Problems written by William E. Boyce and published by John Wiley & Sons. This book was released on 2017-08-21 with total page 623 pages. Available in PDF, EPUB and Kindle. Book excerpt: Elementary Differential Equations and Boundary Value Problems 11e, like its predecessors, is written from the viewpoint of the applied mathematician, whose interest in differential equations may sometimes be quite theoretical, sometimes intensely practical, and often somewhere in between. The authors have sought to combine a sound and accurate (but not abstract) exposition of the elementary theory of differential equations with considerable material on methods of solution, analysis, and approximation that have proved useful in a wide variety of applications. While the general structure of the book remains unchanged, some notable changes have been made to improve the clarity and readability of basic material about differential equations and their applications. In addition to expanded explanations, the 11th edition includes new problems, updated figures and examples to help motivate students. The program is primarily intended for undergraduate students of mathematics, science, or engineering, who typically take a course on differential equations during their first or second year of study. The main prerequisite for engaging with the program is a working knowledge of calculus, gained from a normal two or three semester course sequence or its equivalent. Some familiarity with matrices will also be helpful in the chapters on systems of differential equations.
Book Synopsis Basic Theory of Ordinary Differential Equations by : Po-Fang Hsieh
Download or read book Basic Theory of Ordinary Differential Equations written by Po-Fang Hsieh and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: Providing readers with the very basic knowledge necessary to begin research on differential equations with professional ability, the selection of topics here covers the methods and results that are applicable in a variety of different fields. The book is divided into four parts. The first covers fundamental existence, uniqueness, smoothness with respect to data, and nonuniqueness. The second part describes the basic results concerning linear differential equations, while the third deals with nonlinear equations. In the last part the authors write about the basic results concerning power series solutions. Each chapter begins with a brief discussion of its contents and history, and hints and comments for many problems are given throughout. With 114 illustrations and 206 exercises, the book is suitable for a one-year graduate course, as well as a reference book for research mathematicians.
Book Synopsis Partial Differential Equations I by : Michael E. Taylor
Download or read book Partial Differential Equations I written by Michael E. Taylor and published by Springer Science & Business Media. This book was released on 2010-10-29 with total page 673 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first of three volumes on partial differential equations, this one introduces basic examples arising in continuum mechanics, electromagnetism, complex analysis and other areas, and develops a number of tools for their solution, in particular Fourier analysis, distribution theory, and Sobolev spaces. These tools are then applied to the treatment of basic problems in linear PDE, including the Laplace equation, heat equation, and wave equation, as well as more general elliptic, parabolic, and hyperbolic equations.The book is targeted at graduate students in mathematics and at professional mathematicians with an interest in partial differential equations, mathematical physics, differential geometry, harmonic analysis, and complex analysis.
Book Synopsis Introduction to Hamiltonian Dynamical Systems and the N-Body Problem by : Kenneth R. Meyer
Download or read book Introduction to Hamiltonian Dynamical Systems and the N-Body Problem written by Kenneth R. Meyer and published by Springer. This book was released on 2017-05-04 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt: This third edition text provides expanded material on the restricted three body problem and celestial mechanics. With each chapter containing new content, readers are provided with new material on reduction, orbifolds, and the regularization of the Kepler problem, all of which are provided with applications. The previous editions grew out of graduate level courses in mathematics, engineering, and physics given at several different universities. The courses took students who had some background in differential equations and lead them through a systematic grounding in the theory of Hamiltonian mechanics from a dynamical systems point of view. This text provides a mathematical structure of celestial mechanics ideal for beginners, and will be useful to graduate students and researchers alike. Reviews of the second edition: "The primary subject here is the basic theory of Hamiltonian differential equations studied from the perspective of differential dynamical systems. The N-body problem is used as the primary example of a Hamiltonian system, a touchstone for the theory as the authors develop it. This book is intended to support a first course at the graduate level for mathematics and engineering students. ... It is a well-organized and accessible introduction to the subject ... . This is an attractive book ... ." (William J. Satzer, The Mathematical Association of America, March, 2009) “The second edition of this text infuses new mathematical substance and relevance into an already modern classic ... and is sure to excite future generations of readers. ... This outstanding book can be used not only as an introductory course at the graduate level in mathematics, but also as course material for engineering graduate students. ... it is an elegant and invaluable reference for mathematicians and scientists with an interest in classical and celestial mechanics, astrodynamics, physics, biology, and related fields.” (Marian Gidea, Mathematical Reviews, Issue 2010 d)
Book Synopsis Ordinary and Delay Differential Equations by : R. D. Driver
Download or read book Ordinary and Delay Differential Equations written by R. D. Driver and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 513 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is designed for the intermediate-level course on ordinary differential equations offered at many universities and colleges. It treats, as standard topics of such a course: existence and uniqueness theory, linear s- terns, stability theory, and introductory phase-plane analysis of autonomous second order systems. The unique feature of the book is its further inc- sion of a substantial introduction to delay differential eq- tions. Such equations are motivated by problems in control theory, physics, biology, ecology, economics, inventory c- trol, and the theory of nuclear reactors. The surge of interest in delay differential equations during the past two or three decades is evidenced by th- sands of research papers on the subject and about 20 published books devoted in whole or in part to these equations. The v * ... books include those of Myskis [1951], El' sgol' c [1955] and [1964], Pinney [1958], Krasovskil [1959], Bellman and Cooke [1963], Norkin [1965], Halanay [1966], Oguztoreli [1966], Lakshmikantham and Leela [1969], Mitropol'skir and Martynjuk [1969], Martynjuk [1971], and Hale [1971], plus a number of symposium and seminar proceedings published in the U.S. and the U.S.S.R. These books have influenced the present textbook.
Book Synopsis Partial Differential Relations by : Misha Gromov
Download or read book Partial Differential Relations written by Misha Gromov and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: The classical theory of partial differential equations is rooted in physics, where equations (are assumed to) describe the laws of nature. Law abiding functions, which satisfy such an equation, are very rare in the space of all admissible functions (regardless of a particular topology in a function space). Moreover, some additional (like initial or boundary) conditions often insure the uniqueness of solutions. The existence of these is usually established with some apriori estimates which locate a possible solution in a given function space. We deal in this book with a completely different class of partial differential equations (and more general relations) which arise in differential geometry rather than in physics. Our equations are, for the most part, undetermined (or, at least, behave like those) and their solutions are rather dense in spaces of functions. We solve and classify solutions of these equations by means of direct (and not so direct) geometric constructions. Our exposition is elementary and the proofs of the basic results are selfcontained. However, there is a number of examples and exercises (of variable difficulty), where the treatment of a particular equation requires a certain knowledge of pertinent facts in the surrounding field. The techniques we employ, though quite general, do not cover all geometrically interesting equations. The border of the unexplored territory is marked by a number of open questions throughout the book.
Book Synopsis Ordinary Differential Equations with Applications to Mechanics by : Mircea Soare
Download or read book Ordinary Differential Equations with Applications to Mechanics written by Mircea Soare and published by Springer Science & Business Media. This book was released on 2007-06-04 with total page 497 pages. Available in PDF, EPUB and Kindle. Book excerpt: This interdisciplinary work creates a bridge between the mathematical and the technical disciplines by providing a strong mathematical tool. The present book is a new, English edition of the volume published in 1999. It contains many improvements, as well as new topics, using enlarged and updated references. Only ordinary differential equations and their solutions in an analytical frame were considered, leaving aside their numerical approach.