Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Dynamical Systems By Example
Download Dynamical Systems By Example full books in PDF, epub, and Kindle. Read online Dynamical Systems By Example ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Download or read book Dynamical Systems written by Jürgen Jost and published by Springer Science & Business Media. This book was released on 2005-11-24 with total page 199 pages. Available in PDF, EPUB and Kindle. Book excerpt: Breadth of scope is unique Author is a widely-known and successful textbook author Unlike many recent textbooks on chaotic systems that have superficial treatment, this book provides explanations of the deep underlying mathematical ideas No technical proofs, but an introduction to the whole field that is based on the specific analysis of carefully selected examples Includes a section on cellular automata
Book Synopsis Dynamical Systems by Example by : Luís Barreira
Download or read book Dynamical Systems by Example written by Luís Barreira and published by Springer. This book was released on 2019-04-17 with total page 223 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book comprises an impressive collection of problems that cover a variety of carefully selected topics on the core of the theory of dynamical systems. Aimed at the graduate/upper undergraduate level, the emphasis is on dynamical systems with discrete time. In addition to the basic theory, the topics include topological, low-dimensional, hyperbolic and symbolic dynamics, as well as basic ergodic theory. As in other areas of mathematics, one can gain the first working knowledge of a topic by solving selected problems. It is rare to find large collections of problems in an advanced field of study much less to discover accompanying detailed solutions. This text fills a gap and can be used as a strong companion to an analogous dynamical systems textbook such as the authors’ own Dynamical Systems (Universitext, Springer) or another text designed for a one- or two-semester advanced undergraduate/graduate course. The book is also intended for independent study. Problems often begin with specific cases and then move on to general results, following a natural path of learning. They are also well-graded in terms of increasing the challenge to the reader. Anyone who works through the theory and problems in Part I will have acquired the background and techniques needed to do advanced studies in this area. Part II includes complete solutions to every problem given in Part I with each conveniently restated. Beyond basic prerequisites from linear algebra, differential and integral calculus, and complex analysis and topology, in each chapter the authors recall the notions and results (without proofs) that are necessary to treat the challenges set for that chapter, thus making the text self-contained.
Book Synopsis Dynamical Systems by : Luis Barreira
Download or read book Dynamical Systems written by Luis Barreira and published by Springer Science & Business Media. This book was released on 2012-12-02 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of dynamical systems is a broad and active research subject with connections to most parts of mathematics. Dynamical Systems: An Introduction undertakes the difficult task to provide a self-contained and compact introduction. Topics covered include topological, low-dimensional, hyperbolic and symbolic dynamics, as well as a brief introduction to ergodic theory. In particular, the authors consider topological recurrence, topological entropy, homeomorphisms and diffeomorphisms of the circle, Sharkovski's ordering, the Poincaré-Bendixson theory, and the construction of stable manifolds, as well as an introduction to geodesic flows and the study of hyperbolicity (the latter is often absent in a first introduction). Moreover, the authors introduce the basics of symbolic dynamics, the construction of symbolic codings, invariant measures, Poincaré's recurrence theorem and Birkhoff's ergodic theorem. The exposition is mathematically rigorous, concise and direct: all statements (except for some results from other areas) are proven. At the same time, the text illustrates the theory with many examples and 140 exercises of variable levels of difficulty. The only prerequisites are a background in linear algebra, analysis and elementary topology. This is a textbook primarily designed for a one-semester or two-semesters course at the advanced undergraduate or beginning graduate levels. It can also be used for self-study and as a starting point for more advanced topics.
Book Synopsis One-Dimensional Dynamical Systems by : Ana Rodrigues
Download or read book One-Dimensional Dynamical Systems written by Ana Rodrigues and published by Chapman & Hall/CRC. This book was released on 2021 with total page 100 pages. Available in PDF, EPUB and Kindle. Book excerpt: For almost every phenomenon in Physics, Chemistry, Biology, Medicine, Economics, and other sciences one can make a mathematical model that can be regarded as a dynamical system. One-Dimensional Dynamical Systems: An Example-Led Approach seeks to deep-dive into α standard maps as an example-driven way of explaining the modern theory of the subject in a way that will be engaging for students. Features Example-driven approach Suitable as supplementary reading for a graduate or advanced undergraduate course in dynamical systems.
Book Synopsis Differential Dynamical Systems, Revised Edition by : James D. Meiss
Download or read book Differential Dynamical Systems, Revised Edition written by James D. Meiss and published by SIAM. This book was released on 2017-01-24 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: Differential equations are the basis for models of any physical systems that exhibit smooth change. This book combines much of the material found in a traditional course on ordinary differential equations with an introduction to the more modern theory of dynamical systems. Applications of this theory to physics, biology, chemistry, and engineering are shown through examples in such areas as population modeling, fluid dynamics, electronics, and mechanics. Differential Dynamical Systems begins with coverage of linear systems, including matrix algebra; the focus then shifts to foundational material on nonlinear differential equations, making heavy use of the contraction-mapping theorem. Subsequent chapters deal specifically with dynamical systems concepts?flow, stability, invariant manifolds, the phase plane, bifurcation, chaos, and Hamiltonian dynamics. This new edition contains several important updates and revisions throughout the book. Throughout the book, the author includes exercises to help students develop an analytical and geometrical understanding of dynamics. Many of the exercises and examples are based on applications and some involve computation; an appendix offers simple codes written in Maple, Mathematica, and MATLAB software to give students practice with computation applied to dynamical systems problems.
Book Synopsis Dynamical Systems by : Pierre N.V. Tu
Download or read book Dynamical Systems written by Pierre N.V. Tu and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dynamic tools of analysis and modelling are increasingly used in Economics and Biology and have become more and more sophisticated in recent years, to the point where the general students without training in Dynamic Systems (DS) would be at a loss. No doubt they are referred to the original sources of mathematical theorems used in the various proofs, but the level of mathematics is generally beyond them. Students are thus left with the burden of somehow understanding advanced mathematics by themselves, with· very little help. It is to these general students, equipped only with a modest background of Calculus and Matrix Algebra that this book is dedicated. It aims at providing them with a fairly comprehensive box of dynamical tools they are expected to have at their disposal. The first three Chapters start with the most elementary notions of first and second order Differential and Difference Equations. For these, no matrix theory and hardly any calculus are needed. Then, before embarking on linear and nonlinear DS, a review of some Linear Algebra in Chapter 4 provides the bulk of matrix theory required for the study of later Chapters. Systems of Linear Differ ential Equations (Ch. 5) and Difference Equations (Ch. 6) then follow to provide students with a good background in linear DS, necessary for the subsequent study of nonlinear systems. Linear Algebra, reviewed in Ch. 4, is used freely in these and subsequent chapters to save space and time.
Book Synopsis Data-Driven Science and Engineering by : Steven L. Brunton
Download or read book Data-Driven Science and Engineering written by Steven L. Brunton and published by Cambridge University Press. This book was released on 2022-05-05 with total page 615 pages. Available in PDF, EPUB and Kindle. Book excerpt: A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.
Book Synopsis Introduction to Dynamical Systems by : Michael Brin
Download or read book Introduction to Dynamical Systems written by Michael Brin and published by Cambridge University Press. This book was released on 2015-11-05 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a broad introduction to the subject of dynamical systems, suitable for a one or two-semester graduate course. In the first chapter, the authors introduce over a dozen examples, and then use these examples throughout the book to motivate and clarify the development of the theory. Topics include topological dynamics, symbolic dynamics, ergodic theory, hyperbolic dynamics, one-dimensional dynamics, complex dynamics, and measure-theoretic entropy. The authors top off the presentation with some beautiful and remarkable applications of dynamical systems to areas such as number theory, data storage, and internet search engines.
Book Synopsis An Introduction to Hybrid Dynamical Systems by : Arjan J. van der Schaft
Download or read book An Introduction to Hybrid Dynamical Systems written by Arjan J. van der Schaft and published by Springer. This book was released on 2007-10-03 with total page 189 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about dynamical systems that are "hybrid" in the sense that they contain both continuous and discrete state variables. Recently there has been increased research interest in the study of the interaction between discrete and continuous dynamics. The present volume provides a first attempt in book form to bring together concepts and methods dealing with hybrid systems from various areas, and to look at these from a unified perspective. The authors have chosen a mode of exposition that is largely based on illustrative examples rather than on the abstract theorem-proof format because the systematic study of hybrid systems is still in its infancy. The examples are taken from many different application areas, ranging from power converters to communication protocols and from chaos to mathematical finance. Subjects covered include the following: definition of hybrid systems; description formats; existence and uniqueness of solutions; special subclasses (variable-structure systems, complementarity systems); reachability and verification; stability and stabilizability; control design methods. The book will be of interest to scientists from a wide range of disciplines including: computer science, control theory, dynamical system theory, systems modeling and simulation, and operations research.
Book Synopsis Introduction to Hamiltonian Dynamical Systems and the N-Body Problem by : Kenneth R. Meyer
Download or read book Introduction to Hamiltonian Dynamical Systems and the N-Body Problem written by Kenneth R. Meyer and published by Springer. This book was released on 2017-05-04 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt: This third edition text provides expanded material on the restricted three body problem and celestial mechanics. With each chapter containing new content, readers are provided with new material on reduction, orbifolds, and the regularization of the Kepler problem, all of which are provided with applications. The previous editions grew out of graduate level courses in mathematics, engineering, and physics given at several different universities. The courses took students who had some background in differential equations and lead them through a systematic grounding in the theory of Hamiltonian mechanics from a dynamical systems point of view. This text provides a mathematical structure of celestial mechanics ideal for beginners, and will be useful to graduate students and researchers alike. Reviews of the second edition: "The primary subject here is the basic theory of Hamiltonian differential equations studied from the perspective of differential dynamical systems. The N-body problem is used as the primary example of a Hamiltonian system, a touchstone for the theory as the authors develop it. This book is intended to support a first course at the graduate level for mathematics and engineering students. ... It is a well-organized and accessible introduction to the subject ... . This is an attractive book ... ." (William J. Satzer, The Mathematical Association of America, March, 2009) “The second edition of this text infuses new mathematical substance and relevance into an already modern classic ... and is sure to excite future generations of readers. ... This outstanding book can be used not only as an introductory course at the graduate level in mathematics, but also as course material for engineering graduate students. ... it is an elegant and invaluable reference for mathematicians and scientists with an interest in classical and celestial mechanics, astrodynamics, physics, biology, and related fields.” (Marian Gidea, Mathematical Reviews, Issue 2010 d)
Book Synopsis Invitation to Dynamical Systems by : Edward R. Scheinerman
Download or read book Invitation to Dynamical Systems written by Edward R. Scheinerman and published by Courier Corporation. This book was released on 2012-01-01 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text is designed for those who wish to study mathematics beyond linear algebra but are not ready for abstract material. Rather than a theorem-proof-corollary-remark style of exposition, it stresses geometry, intuition, and dynamical systems. An appendix explains how to write MATLAB, Mathematica, and C programs to compute dynamical systems. 1996 edition.
Book Synopsis Differential Equations and Dynamical Systems by : Lawrence Perko
Download or read book Differential Equations and Dynamical Systems written by Lawrence Perko and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 530 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematics is playing an ever more important role in the physical and biological sciences, provoking a blurring of boundaries between scientific disciplines and a resurgence bf interest in the modern as well as the clas sical techniques of applied mathematics. This renewal of interest, both in research and teaching, has led to the establishment of the series: Texts in Applied Mat!!ematics (TAM). The development of new courses is a natural consequence of a high level of excitement oil the research frontier as newer techniques, such as numerical and symbolic cotnputer systems, dynamical systems, and chaos, mix with and reinforce the traditional methods of applied mathematics. Thus, the purpose of this textbook series is to meet the current and future needs of these advances and encourage the teaching of new courses. TAM will publish textbooks suitable for use in advanced undergraduate and beginning graduate courses, and will complement the Applied Math ematical Sciences (AMS) series, which will focus on advanced textbooks and research level monographs. Preface to the Second Edition This book covers those topics necessary for a clear understanding of the qualitative theory of ordinary differential equations and the concept of a dynamical system. It is written for advanced undergraduates and for beginning graduate students. It begins with a study of linear systems of ordinary differential equations, a topic already familiar to the student who has completed a first course in differential equations.
Book Synopsis Ergodic Theory by : Manfred Einsiedler
Download or read book Ergodic Theory written by Manfred Einsiedler and published by Springer Science & Business Media. This book was released on 2010-09-11 with total page 486 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text is a rigorous introduction to ergodic theory, developing the machinery of conditional measures and expectations, mixing, and recurrence. Beginning by developing the basics of ergodic theory and progressing to describe some recent applications to number theory, this book goes beyond the standard texts in this topic. Applications include Weyl's polynomial equidistribution theorem, the ergodic proof of Szemeredi's theorem, the connection between the continued fraction map and the modular surface, and a proof of the equidistribution of horocycle orbits. Ergodic Theory with a view towards Number Theory will appeal to mathematicians with some standard background in measure theory and functional analysis. No background in ergodic theory or Lie theory is assumed, and a number of exercises and hints to problems are included, making this the perfect companion for graduate students and researchers in ergodic theory, homogenous dynamics or number theory.
Book Synopsis An Introduction To Chaotic Dynamical Systems by : Robert Devaney
Download or read book An Introduction To Chaotic Dynamical Systems written by Robert Devaney and published by CRC Press. This book was released on 2018-03-09 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of nonlinear dynamical systems has exploded in the past 25 years, and Robert L. Devaney has made these advanced research developments accessible to undergraduate and graduate mathematics students as well as researchers in other disciplines with the introduction of this widely praised book. In this second edition of his best-selling text, Devaney includes new material on the orbit diagram fro maps of the interval and the Mandelbrot set, as well as striking color photos illustrating both Julia and Mandelbrot sets. This book assumes no prior acquaintance with advanced mathematical topics such as measure theory, topology, and differential geometry. Assuming only a knowledge of calculus, Devaney introduces many of the basic concepts of modern dynamical systems theory and leads the reader to the point of current research in several areas.
Book Synopsis A Practical Approach to Dynamical Systems for Engineers by : Patricia Mellodge
Download or read book A Practical Approach to Dynamical Systems for Engineers written by Patricia Mellodge and published by Woodhead Publishing. This book was released on 2015-11-19 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Practical Approach to Dynamical Systems for Engineers takes the abstract mathematical concepts behind dynamical systems and applies them to real-world systems, such as a car traveling down the road, the ripples caused by throwing a pebble into a pond, and a clock pendulum swinging back and forth. Many relevant topics are covered, including modeling systems using differential equations, transfer functions, state-space representation, Hamiltonian systems, stability and equilibrium, and nonlinear system characteristics with examples including chaos, bifurcation, and limit cycles. In addition, MATLAB is used extensively to show how the analysis methods are applied to the examples. It is assumed readers will have an understanding of calculus, differential equations, linear algebra, and an interest in mechanical and electrical dynamical systems. - Presents applications in engineering to show the adoption of dynamical system analytical methods - Provides examples on the dynamics of automobiles, aircraft, and human balance, among others, with an emphasis on physical engineering systems - MATLAB and Simulink are used throughout to apply the analysis methods and illustrate the ideas - Offers in-depth discussions of every abstract concept, described in an intuitive manner, and illustrated using practical examples, bridging the gap between theory and practice - Ideal resource for practicing engineers who need to understand background theory and how to apply it
Book Synopsis Discrete Dynamical Systems by : James T. Sandefur
Download or read book Discrete Dynamical Systems written by James T. Sandefur and published by Oxford University Press, USA. This book was released on 1990 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is an elementary introduction to the world of dynamical systems and Chaos. Dynamical systems provide a mathematical means of modeling and analysing aspects of the changing world around us. The aim of this ground-breaking new text is to introduce the reader both to the wide variety of techniques used to study dynamical systems and to their many applications. In particular, investigation of dynamical systems leads to the important concepts of stability, strange attractors, Chaos, and fractals.
Book Synopsis Nonlinear Dynamics and Chaos by : Steven H. Strogatz
Download or read book Nonlinear Dynamics and Chaos written by Steven H. Strogatz and published by CRC Press. This book was released on 2018-05-04 with total page 532 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.