Data Mining Cookbook

Download Data Mining Cookbook PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0471437514
Total Pages : 399 pages
Book Rating : 4.4/5 (714 download)

DOWNLOAD NOW!


Book Synopsis Data Mining Cookbook by : Olivia Parr Rud

Download or read book Data Mining Cookbook written by Olivia Parr Rud and published by John Wiley & Sons. This book was released on 2001-06-01 with total page 399 pages. Available in PDF, EPUB and Kindle. Book excerpt: Increase profits and reduce costs by utilizing this collection of models of the most commonly asked data mining questions In order to find new ways to improve customer sales and support, and as well as manage risk, business managers must be able to mine company databases. This book provides a step-by-step guide to creating and implementing models of the most commonly asked data mining questions. Readers will learn how to prepare data to mine, and develop accurate data mining questions. The author, who has over ten years of data mining experience, also provides actual tested models of specific data mining questions for marketing, sales, customer service and retention, and risk management. A CD-ROM, sold separately, provides these models for reader use.

Exploratory Data Mining and Data Cleaning

Download Exploratory Data Mining and Data Cleaning PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0471458643
Total Pages : 226 pages
Book Rating : 4.4/5 (714 download)

DOWNLOAD NOW!


Book Synopsis Exploratory Data Mining and Data Cleaning by : Tamraparni Dasu

Download or read book Exploratory Data Mining and Data Cleaning written by Tamraparni Dasu and published by John Wiley & Sons. This book was released on 2003-08-01 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written for practitioners of data mining, data cleaning and database management. Presents a technical treatment of data quality including process, metrics, tools and algorithms. Focuses on developing an evolving modeling strategy through an iterative data exploration loop and incorporation of domain knowledge. Addresses methods of detecting, quantifying and correcting data quality issues that can have a significant impact on findings and decisions, using commercially available tools as well as new algorithmic approaches. Uses case studies to illustrate applications in real life scenarios. Highlights new approaches and methodologies, such as the DataSphere space partitioning and summary based analysis techniques. Exploratory Data Mining and Data Cleaning will serve as an important reference for serious data analysts who need to analyze large amounts of unfamiliar data, managers of operations databases, and students in undergraduate or graduate level courses dealing with large scale data analys is and data mining.

Learning Data Mining with Python

Download Learning Data Mining with Python PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1784391204
Total Pages : 344 pages
Book Rating : 4.7/5 (843 download)

DOWNLOAD NOW!


Book Synopsis Learning Data Mining with Python by : Robert Layton

Download or read book Learning Data Mining with Python written by Robert Layton and published by Packt Publishing Ltd. This book was released on 2015-07-29 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: The next step in the information age is to gain insights from the deluge of data coming our way. Data mining provides a way of finding this insight, and Python is one of the most popular languages for data mining, providing both power and flexibility in analysis. This book teaches you to design and develop data mining applications using a variety of datasets, starting with basic classification and affinity analysis. Next, we move on to more complex data types including text, images, and graphs. In every chapter, we create models that solve real-world problems. There is a rich and varied set of libraries available in Python for data mining. This book covers a large number, including the IPython Notebook, pandas, scikit-learn and NLTK. Each chapter of this book introduces you to new algorithms and techniques. By the end of the book, you will gain a large insight into using Python for data mining, with a good knowledge and understanding of the algorithms and implementations.

Handbook of Statistical Analysis and Data Mining Applications

Download Handbook of Statistical Analysis and Data Mining Applications PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0124166458
Total Pages : 824 pages
Book Rating : 4.1/5 (241 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Statistical Analysis and Data Mining Applications by : Ken Yale

Download or read book Handbook of Statistical Analysis and Data Mining Applications written by Ken Yale and published by Elsevier. This book was released on 2017-11-09 with total page 824 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Statistical Analysis and Data Mining Applications, Second Edition, is a comprehensive professional reference book that guides business analysts, scientists, engineers and researchers, both academic and industrial, through all stages of data analysis, model building and implementation. The handbook helps users discern technical and business problems, understand the strengths and weaknesses of modern data mining algorithms and employ the right statistical methods for practical application. This book is an ideal reference for users who want to address massive and complex datasets with novel statistical approaches and be able to objectively evaluate analyses and solutions. It has clear, intuitive explanations of the principles and tools for solving problems using modern analytic techniques and discusses their application to real problems in ways accessible and beneficial to practitioners across several areas—from science and engineering, to medicine, academia and commerce. - Includes input by practitioners for practitioners - Includes tutorials in numerous fields of study that provide step-by-step instruction on how to use supplied tools to build models - Contains practical advice from successful real-world implementations - Brings together, in a single resource, all the information a beginner needs to understand the tools and issues in data mining to build successful data mining solutions - Features clear, intuitive explanations of novel analytical tools and techniques, and their practical applications

Statistical Modeling and Analysis for Database Marketing

Download Statistical Modeling and Analysis for Database Marketing PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 0203496906
Total Pages : 383 pages
Book Rating : 4.2/5 (34 download)

DOWNLOAD NOW!


Book Synopsis Statistical Modeling and Analysis for Database Marketing by : Bruce Ratner

Download or read book Statistical Modeling and Analysis for Database Marketing written by Bruce Ratner and published by CRC Press. This book was released on 2003-05-28 with total page 383 pages. Available in PDF, EPUB and Kindle. Book excerpt: Traditional statistical methods are limited in their ability to meet the modern challenge of mining large amounts of data. Data miners, analysts, and statisticians are searching for innovative new data mining techniques with greater predictive power, an attribute critical for reliable models and analyses. Statistical Modeling and Analysis fo

R and Data Mining

Download R and Data Mining PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 012397271X
Total Pages : 251 pages
Book Rating : 4.1/5 (239 download)

DOWNLOAD NOW!


Book Synopsis R and Data Mining by : Yanchang Zhao

Download or read book R and Data Mining written by Yanchang Zhao and published by Academic Press. This book was released on 2012-12-31 with total page 251 pages. Available in PDF, EPUB and Kindle. Book excerpt: R and Data Mining introduces researchers, post-graduate students, and analysts to data mining using R, a free software environment for statistical computing and graphics. The book provides practical methods for using R in applications from academia to industry to extract knowledge from vast amounts of data. Readers will find this book a valuable guide to the use of R in tasks such as classification and prediction, clustering, outlier detection, association rules, sequence analysis, text mining, social network analysis, sentiment analysis, and more.Data mining techniques are growing in popularity in a broad range of areas, from banking to insurance, retail, telecom, medicine, research, and government. This book focuses on the modeling phase of the data mining process, also addressing data exploration and model evaluation.With three in-depth case studies, a quick reference guide, bibliography, and links to a wealth of online resources, R and Data Mining is a valuable, practical guide to a powerful method of analysis. - Presents an introduction into using R for data mining applications, covering most popular data mining techniques - Provides code examples and data so that readers can easily learn the techniques - Features case studies in real-world applications to help readers apply the techniques in their work

Python Data Analysis Cookbook

Download Python Data Analysis Cookbook PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1785283855
Total Pages : 462 pages
Book Rating : 4.7/5 (852 download)

DOWNLOAD NOW!


Book Synopsis Python Data Analysis Cookbook by : Ivan Idris

Download or read book Python Data Analysis Cookbook written by Ivan Idris and published by Packt Publishing Ltd. This book was released on 2016-07-22 with total page 462 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over 140 practical recipes to help you make sense of your data with ease and build production-ready data apps About This Book Analyze Big Data sets, create attractive visualizations, and manipulate and process various data types Packed with rich recipes to help you learn and explore amazing algorithms for statistics and machine learning Authored by Ivan Idris, expert in python programming and proud author of eight highly reviewed books Who This Book Is For This book teaches Python data analysis at an intermediate level with the goal of transforming you from journeyman to master. Basic Python and data analysis skills and affinity are assumed. What You Will Learn Set up reproducible data analysis Clean and transform data Apply advanced statistical analysis Create attractive data visualizations Web scrape and work with databases, Hadoop, and Spark Analyze images and time series data Mine text and analyze social networks Use machine learning and evaluate the results Take advantage of parallelism and concurrency In Detail Data analysis is a rapidly evolving field and Python is a multi-paradigm programming language suitable for object-oriented application development and functional design patterns. As Python offers a range of tools and libraries for all purposes, it has slowly evolved as the primary language for data science, including topics on: data analysis, visualization, and machine learning. Python Data Analysis Cookbook focuses on reproducibility and creating production-ready systems. You will start with recipes that set the foundation for data analysis with libraries such as matplotlib, NumPy, and pandas. You will learn to create visualizations by choosing color maps and palettes then dive into statistical data analysis using distribution algorithms and correlations. You'll then help you find your way around different data and numerical problems, get to grips with Spark and HDFS, and then set up migration scripts for web mining. In this book, you will dive deeper into recipes on spectral analysis, smoothing, and bootstrapping methods. Moving on, you will learn to rank stocks and check market efficiency, then work with metrics and clusters. You will achieve parallelism to improve system performance by using multiple threads and speeding up your code. By the end of the book, you will be capable of handling various data analysis techniques in Python and devising solutions for problem scenarios. Style and Approach The book is written in “cookbook” style striving for high realism in data analysis. Through the recipe-based format, you can read each recipe separately as required and immediately apply the knowledge gained.

Data Preparation for Data Mining

Download Data Preparation for Data Mining PDF Online Free

Author :
Publisher : Morgan Kaufmann
ISBN 13 : 9781558605299
Total Pages : 566 pages
Book Rating : 4.6/5 (52 download)

DOWNLOAD NOW!


Book Synopsis Data Preparation for Data Mining by : Dorian Pyle

Download or read book Data Preparation for Data Mining written by Dorian Pyle and published by Morgan Kaufmann. This book was released on 1999-03-22 with total page 566 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the importance of clean, well-structured data as the first step to successful data mining. It shows how data should be prepared prior to mining in order to maximize mining performance.

Data Science for Business

Download Data Science for Business PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 144937428X
Total Pages : 506 pages
Book Rating : 4.4/5 (493 download)

DOWNLOAD NOW!


Book Synopsis Data Science for Business by : Foster Provost

Download or read book Data Science for Business written by Foster Provost and published by "O'Reilly Media, Inc.". This book was released on 2013-07-27 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by renowned data science experts Foster Provost and Tom Fawcett, Data Science for Business introduces the fundamental principles of data science, and walks you through the "data-analytic thinking" necessary for extracting useful knowledge and business value from the data you collect. This guide also helps you understand the many data-mining techniques in use today. Based on an MBA course Provost has taught at New York University over the past ten years, Data Science for Business provides examples of real-world business problems to illustrate these principles. You’ll not only learn how to improve communication between business stakeholders and data scientists, but also how participate intelligently in your company’s data science projects. You’ll also discover how to think data-analytically, and fully appreciate how data science methods can support business decision-making. Understand how data science fits in your organization—and how you can use it for competitive advantage Treat data as a business asset that requires careful investment if you’re to gain real value Approach business problems data-analytically, using the data-mining process to gather good data in the most appropriate way Learn general concepts for actually extracting knowledge from data Apply data science principles when interviewing data science job candidates

Principles of Data Mining

Download Principles of Data Mining PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 9780262082907
Total Pages : 594 pages
Book Rating : 4.0/5 (829 download)

DOWNLOAD NOW!


Book Synopsis Principles of Data Mining by : David J. Hand

Download or read book Principles of Data Mining written by David J. Hand and published by MIT Press. This book was released on 2001-08-17 with total page 594 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first truly interdisciplinary text on data mining, blending the contributions of information science, computer science, and statistics. The growing interest in data mining is motivated by a common problem across disciplines: how does one store, access, model, and ultimately describe and understand very large data sets? Historically, different aspects of data mining have been addressed independently by different disciplines. This is the first truly interdisciplinary text on data mining, blending the contributions of information science, computer science, and statistics. The book consists of three sections. The first, foundations, provides a tutorial overview of the principles underlying data mining algorithms and their application. The presentation emphasizes intuition rather than rigor. The second section, data mining algorithms, shows how algorithms are constructed to solve specific problems in a principled manner. The algorithms covered include trees and rules for classification and regression, association rules, belief networks, classical statistical models, nonlinear models such as neural networks, and local "memory-based" models. The third section shows how all of the preceding analysis fits together when applied to real-world data mining problems. Topics include the role of metadata, how to handle missing data, and data preprocessing.

Mining the Social Web

Download Mining the Social Web PDF Online Free

Author :
Publisher : O'Reilly Media
ISBN 13 : 1491973528
Total Pages : 425 pages
Book Rating : 4.4/5 (919 download)

DOWNLOAD NOW!


Book Synopsis Mining the Social Web by : Matthew A. Russell

Download or read book Mining the Social Web written by Matthew A. Russell and published by O'Reilly Media. This book was released on 2018-12-04 with total page 425 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mine the rich data tucked away in popular social websites such as Twitter, Facebook, LinkedIn, and Instagram. With the third edition of this popular guide, data scientists, analysts, and programmers will learn how to glean insights from social media—including who’s connecting with whom, what they’re talking about, and where they’re located—using Python code examples, Jupyter notebooks, or Docker containers. In part one, each standalone chapter focuses on one aspect of the social landscape, including each of the major social sites, as well as web pages, blogs and feeds, mailboxes, GitHub, and a newly added chapter covering Instagram. Part two provides a cookbook with two dozen bite-size recipes for solving particular issues with Twitter. Get a straightforward synopsis of the social web landscape Use Docker to easily run each chapter’s example code, packaged as a Jupyter notebook Adapt and contribute to the code’s open source GitHub repository Learn how to employ best-in-class Python 3 tools to slice and dice the data you collect Apply advanced mining techniques such as TFIDF, cosine similarity, collocation analysis, clique detection, and image recognition Build beautiful data visualizations with Python and JavaScript toolkits

Mining the Social Web

Download Mining the Social Web PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1449388345
Total Pages : 356 pages
Book Rating : 4.4/5 (493 download)

DOWNLOAD NOW!


Book Synopsis Mining the Social Web by : Matthew Russell

Download or read book Mining the Social Web written by Matthew Russell and published by "O'Reilly Media, Inc.". This book was released on 2011-01-21 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: Facebook, Twitter, and LinkedIn generate a tremendous amount of valuable social data, but how can you find out who's making connections with social media, what they’re talking about, or where they’re located? This concise and practical book shows you how to answer these questions and more. You'll learn how to combine social web data, analysis techniques, and visualization to help you find what you've been looking for in the social haystack, as well as useful information you didn't know existed. Each standalone chapter introduces techniques for mining data in different areas of the social Web, including blogs and email. All you need to get started is a programming background and a willingness to learn basic Python tools. Get a straightforward synopsis of the social web landscape Use adaptable scripts on GitHub to harvest data from social network APIs such as Twitter, Facebook, and LinkedIn Learn how to employ easy-to-use Python tools to slice and dice the data you collect Explore social connections in microformats with the XHTML Friends Network Apply advanced mining techniques such as TF-IDF, cosine similarity, collocation analysis, document summarization, and clique detection Build interactive visualizations with web technologies based upon HTML5 and JavaScript toolkits "Let Matthew Russell serve as your guide to working with social data sets old (email, blogs) and new (Twitter, LinkedIn, Facebook). Mining the Social Web is a natural successor to Programming Collective Intelligence: a practical, hands-on approach to hacking on data from the social Web with Python." --Jeff Hammerbacher, Chief Scientist, Cloudera "A rich, compact, useful, practical introduction to a galaxy of tools, techniques, and theories for exploring structured and unstructured data." --Alex Martelli, Senior Staff Engineer, Google

R Data Mining

Download R Data Mining PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1787129233
Total Pages : 428 pages
Book Rating : 4.7/5 (871 download)

DOWNLOAD NOW!


Book Synopsis R Data Mining by : Andrea Cirillo

Download or read book R Data Mining written by Andrea Cirillo and published by Packt Publishing Ltd. This book was released on 2017-11-29 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mine valuable insights from your data using popular tools and techniques in R About This Book Understand the basics of data mining and why R is a perfect tool for it. Manipulate your data using popular R packages such as ggplot2, dplyr, and so on to gather valuable business insights from it. Apply effective data mining models to perform regression and classification tasks. Who This Book Is For If you are a budding data scientist, or a data analyst with a basic knowledge of R, and want to get into the intricacies of data mining in a practical manner, this is the book for you. No previous experience of data mining is required. What You Will Learn Master relevant packages such as dplyr, ggplot2 and so on for data mining Learn how to effectively organize a data mining project through the CRISP-DM methodology Implement data cleaning and validation tasks to get your data ready for data mining activities Execute Exploratory Data Analysis both the numerical and the graphical way Develop simple and multiple regression models along with logistic regression Apply basic ensemble learning techniques to join together results from different data mining models Perform text mining analysis from unstructured pdf files and textual data Produce reports to effectively communicate objectives, methods, and insights of your analyses In Detail R is widely used to leverage data mining techniques across many different industries, including finance, medicine, scientific research, and more. This book will empower you to produce and present impressive analyses from data, by selecting and implementing the appropriate data mining techniques in R. It will let you gain these powerful skills while immersing in a one of a kind data mining crime case, where you will be requested to help resolving a real fraud case affecting a commercial company, by the mean of both basic and advanced data mining techniques. While moving along the plot of the story you will effectively learn and practice on real data the various R packages commonly employed for this kind of tasks. You will also get the chance of apply some of the most popular and effective data mining models and algos, from the basic multiple linear regression to the most advanced Support Vector Machines. Unlike other data mining learning instruments, this book will effectively expose you the theory behind these models, their relevant assumptions and when they can be applied to the data you are facing. By the end of the book you will hold a new and powerful toolbox of instruments, exactly knowing when and how to employ each of them to solve your data mining problems and get the most out of your data. Finally, to let you maximize the exposure to the concepts described and the learning process, the book comes packed with a reproducible bundle of commented R scripts and a practical set of data mining models cheat sheets. Style and approach This book takes a practical, step-by-step approach to explain the concepts of data mining. Practical use-cases involving real-world datasets are used throughout the book to clearly explain theoretical concepts.

Python Data Mining Quick Start Guide

Download Python Data Mining Quick Start Guide PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1789806402
Total Pages : 181 pages
Book Rating : 4.7/5 (898 download)

DOWNLOAD NOW!


Book Synopsis Python Data Mining Quick Start Guide by : Nathan Greeneltch

Download or read book Python Data Mining Quick Start Guide written by Nathan Greeneltch and published by Packt Publishing Ltd. This book was released on 2019-04-25 with total page 181 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explore the different data mining techniques using the libraries and packages offered by Python Key FeaturesGrasp the basics of data loading, cleaning, analysis, and visualizationUse the popular Python libraries such as NumPy, pandas, matplotlib, and scikit-learn for data miningYour one-stop guide to build efficient data mining pipelines without going into too much theoryBook Description Data mining is a necessary and predictable response to the dawn of the information age. It is typically defined as the pattern and/ or trend discovery phase in the data mining pipeline, and Python is a popular tool for performing these tasks as it offers a wide variety of tools for data mining. This book will serve as a quick introduction to the concept of data mining and putting it to practical use with the help of popular Python packages and libraries. You will get a hands-on demonstration of working with different real-world datasets and extracting useful insights from them using popular Python libraries such as NumPy, pandas, scikit-learn, and matplotlib. You will then learn the different stages of data mining such as data loading, cleaning, analysis, and visualization. You will also get a full conceptual description of popular data transformation, clustering, and classification techniques. By the end of this book, you will be able to build an efficient data mining pipeline using Python without any hassle. What you will learnExplore the methods for summarizing datasets and visualizing/plotting dataCollect and format data for analytical workAssign data points into groups and visualize clustering patternsLearn how to predict continuous and categorical outputs for dataClean, filter noise from, and reduce the dimensions of dataSerialize a data processing model using scikit-learn’s pipeline featureDeploy the data processing model using Python’s pickle moduleWho this book is for Python developers interested in getting started with data mining will love this book. Budding data scientists and data analysts looking to quickly get to grips with practical data mining with Python will also find this book to be useful. Knowledge of Python programming is all you need to get started.

Data Mining For Dummies

Download Data Mining For Dummies PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118893166
Total Pages : 422 pages
Book Rating : 4.1/5 (188 download)

DOWNLOAD NOW!


Book Synopsis Data Mining For Dummies by : Meta S. Brown

Download or read book Data Mining For Dummies written by Meta S. Brown and published by John Wiley & Sons. This book was released on 2014-09-04 with total page 422 pages. Available in PDF, EPUB and Kindle. Book excerpt: Delve into your data for the key to success Data mining is quickly becoming integral to creating value and business momentum. The ability to detect unseen patterns hidden in the numbers exhaustively generated by day-to-day operations allows savvy decision-makers to exploit every tool at their disposal in the pursuit of better business. By creating models and testing whether patterns hold up, it is possible to discover new intelligence that could change your business's entire paradigm for a more successful outcome. Data Mining for Dummies shows you why it doesn't take a data scientist to gain this advantage, and empowers average business people to start shaping a process relevant to their business's needs. In this book, you'll learn the hows and whys of mining to the depths of your data, and how to make the case for heavier investment into data mining capabilities. The book explains the details of the knowledge discovery process including: Model creation, validity testing, and interpretation Effective communication of findings Available tools, both paid and open-source Data selection, transformation, and evaluation Data Mining for Dummies takes you step-by-step through a real-world data-mining project using open-source tools that allow you to get immediate hands-on experience working with large amounts of data. You'll gain the confidence you need to start making data mining practices a routine part of your successful business. If you're serious about doing everything you can to push your company to the top, Data Mining for Dummies is your ticket to effective data mining.

IBM SPSS Modeler Essentials

Download IBM SPSS Modeler Essentials PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1788296826
Total Pages : 231 pages
Book Rating : 4.7/5 (882 download)

DOWNLOAD NOW!


Book Synopsis IBM SPSS Modeler Essentials by : Keith McCormick

Download or read book IBM SPSS Modeler Essentials written by Keith McCormick and published by Packt Publishing Ltd. This book was released on 2017-12-26 with total page 231 pages. Available in PDF, EPUB and Kindle. Book excerpt: Get to grips with the fundamentals of data mining and predictive analytics with IBM SPSS Modeler About This Book Get up–and-running with IBM SPSS Modeler without going into too much depth. Identify interesting relationships within your data and build effective data mining and predictive analytics solutions A quick, easy–to-follow guide to give you a fundamental understanding of SPSS Modeler, written by the best in the business Who This Book Is For This book is ideal for those who are new to SPSS Modeler and want to start using it as quickly as possible, without going into too much detail. An understanding of basic data mining concepts will be helpful, to get the best out of the book. What You Will Learn Understand the basics of data mining and familiarize yourself with Modeler's visual programming interface Import data into Modeler and learn how to properly declare metadata Obtain summary statistics and audit the quality of your data Prepare data for modeling by selecting and sorting cases, identifying and removing duplicates, combining data files, and modifying and creating fields Assess simple relationships using various statistical and graphing techniques Get an overview of the different types of models available in Modeler Build a decision tree model and assess its results Score new data and export predictions In Detail IBM SPSS Modeler allows users to quickly and efficiently use predictive analytics and gain insights from your data. With almost 25 years of history, Modeler is the most established and comprehensive Data Mining workbench available. Since it is popular in corporate settings, widely available in university settings, and highly compatible with all the latest technologies, it is the perfect way to start your Data Science and Machine Learning journey. This book takes a detailed, step-by-step approach to introducing data mining using the de facto standard process, CRISP-DM, and Modeler's easy to learn “visual programming” style. You will learn how to read data into Modeler, assess data quality, prepare your data for modeling, find interesting patterns and relationships within your data, and export your predictions. Using a single case study throughout, this intentionally short and focused book sticks to the essentials. The authors have drawn upon their decades of teaching thousands of new users, to choose those aspects of Modeler that you should learn first, so that you get off to a good start using proven best practices. This book provides an overview of various popular data modeling techniques and presents a detailed case study of how to use CHAID, a decision tree model. Assessing a model's performance is as important as building it; this book will also show you how to do that. Finally, you will see how you can score new data and export your predictions. By the end of this book, you will have a firm understanding of the basics of data mining and how to effectively use Modeler to build predictive models. Style and approach This book empowers users to build practical & accurate predictive models quickly and intuitively. With the support of the advanced analytics users can discover hidden patterns and trends.This will help users to understand the factors that influence them, enabling you to take advantage of business opportunities and mitigate risks.

Hands-On Data Science and Python Machine Learning

Download Hands-On Data Science and Python Machine Learning PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1787280225
Total Pages : 415 pages
Book Rating : 4.7/5 (872 download)

DOWNLOAD NOW!


Book Synopsis Hands-On Data Science and Python Machine Learning by : Frank Kane

Download or read book Hands-On Data Science and Python Machine Learning written by Frank Kane and published by Packt Publishing Ltd. This book was released on 2017-07-31 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the fundamentals of machine learning with Python in a concise and dynamic manner. It covers data mining and large-scale machine learning using Apache Spark. About This Book Take your first steps in the world of data science by understanding the tools and techniques of data analysis Train efficient Machine Learning models in Python using the supervised and unsupervised learning methods Learn how to use Apache Spark for processing Big Data efficiently Who This Book Is For If you are a budding data scientist or a data analyst who wants to analyze and gain actionable insights from data using Python, this book is for you. Programmers with some experience in Python who want to enter the lucrative world of Data Science will also find this book to be very useful, but you don't need to be an expert Python coder or mathematician to get the most from this book. What You Will Learn Learn how to clean your data and ready it for analysis Implement the popular clustering and regression methods in Python Train efficient machine learning models using decision trees and random forests Visualize the results of your analysis using Python's Matplotlib library Use Apache Spark's MLlib package to perform machine learning on large datasets In Detail Join Frank Kane, who worked on Amazon and IMDb's machine learning algorithms, as he guides you on your first steps into the world of data science. Hands-On Data Science and Python Machine Learning gives you the tools that you need to understand and explore the core topics in the field, and the confidence and practice to build and analyze your own machine learning models. With the help of interesting and easy-to-follow practical examples, Frank Kane explains potentially complex topics such as Bayesian methods and K-means clustering in a way that anybody can understand them. Based on Frank's successful data science course, Hands-On Data Science and Python Machine Learning empowers you to conduct data analysis and perform efficient machine learning using Python. Let Frank help you unearth the value in your data using the various data mining and data analysis techniques available in Python, and to develop efficient predictive models to predict future results. You will also learn how to perform large-scale machine learning on Big Data using Apache Spark. The book covers preparing your data for analysis, training machine learning models, and visualizing the final data analysis. Style and approach This comprehensive book is a perfect blend of theory and hands-on code examples in Python which can be used for your reference at any time.