Data-Driven Science and Engineering

Download Data-Driven Science and Engineering PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1009098489
Total Pages : 615 pages
Book Rating : 4.0/5 (9 download)

DOWNLOAD NOW!


Book Synopsis Data-Driven Science and Engineering by : Steven L. Brunton

Download or read book Data-Driven Science and Engineering written by Steven L. Brunton and published by Cambridge University Press. This book was released on 2022-05-05 with total page 615 pages. Available in PDF, EPUB and Kindle. Book excerpt: A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.

Dynamic Mode Decomposition

Download Dynamic Mode Decomposition PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 1611974496
Total Pages : 241 pages
Book Rating : 4.6/5 (119 download)

DOWNLOAD NOW!


Book Synopsis Dynamic Mode Decomposition by : J. Nathan Kutz

Download or read book Dynamic Mode Decomposition written by J. Nathan Kutz and published by SIAM. This book was released on 2016-11-23 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data-driven dynamical systems is a burgeoning field?it connects how measurements of nonlinear dynamical systems and/or complex systems can be used with well-established methods in dynamical systems theory. This is a critically important new direction because the governing equations of many problems under consideration by practitioners in various scientific fields are not typically known. Thus, using data alone to help derive, in an optimal sense, the best dynamical system representation of a given application allows for important new insights. The recently developed dynamic mode decomposition (DMD) is an innovative tool for integrating data with dynamical systems theory. The DMD has deep connections with traditional dynamical systems theory and many recent innovations in compressed sensing and machine learning. Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems, the first book to address the DMD algorithm, presents a pedagogical and comprehensive approach to all aspects of DMD currently developed or under development; blends theoretical development, example codes, and applications to showcase the theory and its many innovations and uses; highlights the numerous innovations around the DMD algorithm and demonstrates its efficacy using example problems from engineering and the physical and biological sciences; and provides extensive MATLAB code, data for intuitive examples of key methods, and graphical presentations.

Data-Driven Modeling & Scientific Computation

Download Data-Driven Modeling & Scientific Computation PDF Online Free

Author :
Publisher :
ISBN 13 : 0199660336
Total Pages : 657 pages
Book Rating : 4.1/5 (996 download)

DOWNLOAD NOW!


Book Synopsis Data-Driven Modeling & Scientific Computation by : Jose Nathan Kutz

Download or read book Data-Driven Modeling & Scientific Computation written by Jose Nathan Kutz and published by . This book was released on 2013-08-08 with total page 657 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combining scientific computing methods and algorithms with modern data analysis techniques, including basic applications of compressive sensing and machine learning, this book develops techniques that allow for the integration of the dynamics of complex systems and big data. MATLAB is used throughout for mathematical solution strategies.

Data-Driven Methods for Dynamic Systems

Download Data-Driven Methods for Dynamic Systems PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 1611978165
Total Pages : 180 pages
Book Rating : 4.6/5 (119 download)

DOWNLOAD NOW!


Book Synopsis Data-Driven Methods for Dynamic Systems by : Jason Bramburger

Download or read book Data-Driven Methods for Dynamic Systems written by Jason Bramburger and published by SIAM. This book was released on 2024-11-05 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: As experimental data sets have grown and computational power has increased, new tools have been developed that have the power to model new systems and fundamentally alter how current systems are analyzed. This book brings together modern computational tools to provide an accurate understanding of dynamic data. The techniques build on pencil-and-paper mathematical techniques that go back decades and sometimes even centuries. The result is an introduction to state-of-the-art methods that complement, rather than replace, traditional analysis of time-dependent systems. Data-Driven Methods for Dynamic Systems provides readers with methods not found in other texts as well as novel ones developed just for this book; an example-driven presentation that provides background material and descriptions of methods without getting bogged down in technicalities; and examples that demonstrate the applicability of a method and introduce the features and drawbacks of their application. The online supplementary material includes a code repository that can be used to reproduce every example and that can be repurposed to fit a variety of applications not found in the book. This book is intended as an introduction to the field of data-driven methods for graduate students. It will also be of interest to researchers who want to familiarize themselves with the discipline. It can be used in courses on dynamical systems, differential equations, and data science.

Computational Science — ICCS 2004

Download Computational Science — ICCS 2004 PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540221166
Total Pages : 1376 pages
Book Rating : 4.5/5 (42 download)

DOWNLOAD NOW!


Book Synopsis Computational Science — ICCS 2004 by : Marian Bubak

Download or read book Computational Science — ICCS 2004 written by Marian Bubak and published by Springer Science & Business Media. This book was released on 2004-05-26 with total page 1376 pages. Available in PDF, EPUB and Kindle. Book excerpt: The International Conference on Computational Science (ICCS 2004) held in Krak ́ ow, Poland, June 6–9, 2004, was a follow-up to the highly successful ICCS 2003 held at two locations, in Melbourne, Australia and St. Petersburg, Russia; ICCS 2002 in Amsterdam, The Netherlands; and ICCS 2001 in San Francisco, USA. As computational science is still evolving in its quest for subjects of inves- gation and e?cient methods, ICCS 2004 was devised as a forum for scientists from mathematics and computer science, as the basic computing disciplines and application areas, interested in advanced computational methods for physics, chemistry, life sciences, engineering, arts and humanities, as well as computer system vendors and software developers. The main objective of this conference was to discuss problems and solutions in all areas, to identify new issues, to shape future directions of research, and to help users apply various advanced computational techniques. The event harvested recent developments in com- tationalgridsandnextgenerationcomputingsystems,tools,advancednumerical methods, data-driven systems, and novel application ?elds, such as complex - stems, ?nance, econo-physics and population evolution.

Handbook of Dynamic Data Driven Applications Systems

Download Handbook of Dynamic Data Driven Applications Systems PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031279867
Total Pages : 937 pages
Book Rating : 4.0/5 (312 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Dynamic Data Driven Applications Systems by : Frederica Darema

Download or read book Handbook of Dynamic Data Driven Applications Systems written by Frederica Darema and published by Springer Nature. This book was released on 2023-10-16 with total page 937 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Second Volume in the series Handbook of Dynamic Data Driven Applications Systems (DDDAS) expands the scope of the methods and the application areas presented in the first Volume and aims to provide additional and extended content of the increasing set of science and engineering advances for new capabilities enabled through DDDAS. The methods and examples of breakthroughs presented in the book series capture the DDDAS paradigm and its scientific and technological impact and benefits. The DDDAS paradigm and the ensuing DDDAS-based frameworks for systems’ analysis and design have been shown to engender new and advanced capabilities for understanding, analysis, and management of engineered, natural, and societal systems (“applications systems”), and for the commensurate wide set of scientific and engineering fields and applications, as well as foundational areas. The DDDAS book series aims to be a reference source of many of the important research and development efforts conducted under the rubric of DDDAS, and to also inspire the broader communities of researchers and developers about the potential in their respective areas of interest, of the application and the exploitation of the DDDAS paradigm and the ensuing frameworks, through the examples and case studies presented, either within their own field or other fields of study. As in the first volume, the chapters in this book reflect research work conducted over the years starting in the 1990’s to the present. Here, the theory and application content are considered for: Foundational Methods Materials Systems Structural Systems Energy Systems Environmental Systems: Domain Assessment & Adverse Conditions/Wildfires Surveillance Systems Space Awareness Systems Healthcare Systems Decision Support Systems Cyber Security Systems Design of Computer Systems The readers of this book series will benefit from DDDAS theory advances such as object estimation, information fusion, and sensor management. The increased interest in Artificial Intelligence (AI), Machine Learning and Neural Networks (NN) provides opportunities for DDDAS-based methods to show the key role DDDAS plays in enabling AI capabilities; address challenges that ML-alone does not, and also show how ML in combination with DDDAS-based methods can deliver the advanced capabilities sought; likewise, infusion of DDDAS-like approaches in NN-methods strengthens such methods. Moreover, the “DDDAS-based Digital Twin” or “Dynamic Digital Twin”, goes beyond the traditional DT notion where the model and the physical system are viewed side-by-side in a static way, to a paradigm where the model dynamically interacts with the physical system through its instrumentation, (per the DDDAS feed-back control loop between model and instrumentation).

Dynamic Data Driven Applications Systems

Download Dynamic Data Driven Applications Systems PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030617254
Total Pages : 356 pages
Book Rating : 4.0/5 (36 download)

DOWNLOAD NOW!


Book Synopsis Dynamic Data Driven Applications Systems by : Frederica Darema

Download or read book Dynamic Data Driven Applications Systems written by Frederica Darema and published by Springer Nature. This book was released on 2020-11-02 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the Third International Conference on Dynamic Data Driven Application Systems, DDDAS 2020, held in Boston, MA, USA, in October 2020. The 21 full papers and 14 short papers presented in this volume were carefully reviewed and selected from 40 submissions. They cover topics such as: digital twins; environment cognizant adaptive-planning systems; energy systems; materials systems; physics-based systems analysis; imaging methods and systems; and learning systems.

Data-Driven Modeling, Filtering and Control

Download Data-Driven Modeling, Filtering and Control PDF Online Free

Author :
Publisher : Institution of Engineering and Technology
ISBN 13 : 1785617125
Total Pages : 300 pages
Book Rating : 4.7/5 (856 download)

DOWNLOAD NOW!


Book Synopsis Data-Driven Modeling, Filtering and Control by : Carlo Novara

Download or read book Data-Driven Modeling, Filtering and Control written by Carlo Novara and published by Institution of Engineering and Technology. This book was released on 2019-07-10 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: The scientific research in many engineering fields has been shifting from traditional first-principle-based to data-driven or evidence-based theories. The latter methods may enable better system design, based on more accurate and verifiable information.

Analytical Methods for Dynamic Modelers

Download Analytical Methods for Dynamic Modelers PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262331438
Total Pages : 443 pages
Book Rating : 4.2/5 (623 download)

DOWNLOAD NOW!


Book Synopsis Analytical Methods for Dynamic Modelers by : Hazhir Rahmandad

Download or read book Analytical Methods for Dynamic Modelers written by Hazhir Rahmandad and published by MIT Press. This book was released on 2015-11-27 with total page 443 pages. Available in PDF, EPUB and Kindle. Book excerpt: A user-friendly introduction to some of the most useful analytical tools for model building, estimation, and analysis, presenting key methods and examples. Simulation modeling is increasingly integrated into research and policy analysis of complex sociotechnical systems in a variety of domains. Model-based analysis and policy design inform a range of applications in fields from economics to engineering to health care. This book offers a hands-on introduction to key analytical methods for dynamic modeling. Bringing together tools and methodologies from fields as diverse as computational statistics, econometrics, and operations research in a single text, the book can be used for graduate-level courses and as a reference for dynamic modelers who want to expand their methodological toolbox. The focus is on quantitative techniques for use by dynamic modelers during model construction and analysis, and the material presented is accessible to readers with a background in college-level calculus and statistics. Each chapter describes a key method, presenting an introduction that emphasizes the basic intuition behind each method, tutorial style examples, references to key literature, and exercises. The chapter authors are all experts in the tools and methods they present. The book covers estimation of model parameters using quantitative data; understanding the links between model structure and its behavior; and decision support and optimization. An online appendix offers computer code for applications, models, and solutions to exercises. Contributors Wenyi An, Edward G. Anderson Jr., Yaman Barlas, Nishesh Chalise, Robert Eberlein, Hamed Ghoddusi, Winfried Grassmann, Peter S. Hovmand, Mohammad S. Jalali, Nitin Joglekar, David Keith, Juxin Liu, Erling Moxnes, Rogelio Oliva, Nathaniel D. Osgood, Hazhir Rahmandad, Raymond Spiteri, John Sterman, Jeroen Struben, Burcu Tan, Karen Yee, Gönenç Yücel

Modelling and Control of Dynamic Systems Using Gaussian Process Models

Download Modelling and Control of Dynamic Systems Using Gaussian Process Models PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319210211
Total Pages : 281 pages
Book Rating : 4.3/5 (192 download)

DOWNLOAD NOW!


Book Synopsis Modelling and Control of Dynamic Systems Using Gaussian Process Models by : Juš Kocijan

Download or read book Modelling and Control of Dynamic Systems Using Gaussian Process Models written by Juš Kocijan and published by Springer. This book was released on 2015-11-21 with total page 281 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph opens up new horizons for engineers and researchers in academia and in industry dealing with or interested in new developments in the field of system identification and control. It emphasizes guidelines for working solutions and practical advice for their implementation rather than the theoretical background of Gaussian process (GP) models. The book demonstrates the potential of this recent development in probabilistic machine-learning methods and gives the reader an intuitive understanding of the topic. The current state of the art is treated along with possible future directions for research. Systems control design relies on mathematical models and these may be developed from measurement data. This process of system identification, when based on GP models, can play an integral part of control design in data-based control and its description as such is an essential aspect of the text. The background of GP regression is introduced first with system identification and incorporation of prior knowledge then leading into full-blown control. The book is illustrated by extensive use of examples, line drawings, and graphical presentation of computer-simulation results and plant measurements. The research results presented are applied in real-life case studies drawn from successful applications including: a gas–liquid separator control; urban-traffic signal modelling and reconstruction; and prediction of atmospheric ozone concentration. A MATLAB® toolbox, for identification and simulation of dynamic GP models is provided for download.

Identification of Dynamic Systems

Download Identification of Dynamic Systems PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9783540871552
Total Pages : 705 pages
Book Rating : 4.8/5 (715 download)

DOWNLOAD NOW!


Book Synopsis Identification of Dynamic Systems by : Rolf Isermann

Download or read book Identification of Dynamic Systems written by Rolf Isermann and published by Springer. This book was released on 2011-04-08 with total page 705 pages. Available in PDF, EPUB and Kindle. Book excerpt: Precise dynamic models of processes are required for many applications, ranging from control engineering to the natural sciences and economics. Frequently, such precise models cannot be derived using theoretical considerations alone. Therefore, they must be determined experimentally. This book treats the determination of dynamic models based on measurements taken at the process, which is known as system identification or process identification. Both offline and online methods are presented, i.e. methods that post-process the measured data as well as methods that provide models during the measurement. The book is theory-oriented and application-oriented and most methods covered have been used successfully in practical applications for many different processes. Illustrative examples in this book with real measured data range from hydraulic and electric actuators up to combustion engines. Real experimental data is also provided on the Springer webpage, allowing readers to gather their first experience with the methods presented in this book. Among others, the book covers the following subjects: determination of the non-parametric frequency response, (fast) Fourier transform, correlation analysis, parameter estimation with a focus on the method of Least Squares and modifications, identification of time-variant processes, identification in closed-loop, identification of continuous time processes, and subspace methods. Some methods for nonlinear system identification are also considered, such as the Extended Kalman filter and neural networks. The different methods are compared by using a real three-mass oscillator process, a model of a drive train. For many identification methods, hints for the practical implementation and application are provided. The book is intended to meet the needs of students and practicing engineers working in research and development, design and manufacturing.

The Koopman Operator in Systems and Control

Download The Koopman Operator in Systems and Control PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030357139
Total Pages : 568 pages
Book Rating : 4.0/5 (33 download)

DOWNLOAD NOW!


Book Synopsis The Koopman Operator in Systems and Control by : Alexandre Mauroy

Download or read book The Koopman Operator in Systems and Control written by Alexandre Mauroy and published by Springer Nature. This book was released on 2020-02-22 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a broad overview of state-of-the-art research at the intersection of the Koopman operator theory and control theory. It also reviews novel theoretical results obtained and efficient numerical methods developed within the framework of Koopman operator theory. The contributions discuss the latest findings and techniques in several areas of control theory, including model predictive control, optimal control, observer design, systems identification and structural analysis of controlled systems, addressing both theoretical and numerical aspects and presenting open research directions, as well as detailed numerical schemes and data-driven methods. Each contribution addresses a specific problem. After a brief introduction of the Koopman operator framework, including basic notions and definitions, the book explores numerical methods, such as the dynamic mode decomposition (DMD) algorithm and Arnoldi-based methods, which are used to represent the operator in a finite-dimensional basis and to compute its spectral properties from data. The main body of the book is divided into three parts: theoretical results and numerical techniques for observer design, synthesis analysis, stability analysis, parameter estimation, and identification; data-driven techniques based on DMD, which extract the spectral properties of the Koopman operator from data for the structural analysis of controlled systems; and Koopman operator techniques with specific applications in systems and control, which range from heat transfer analysis to robot control. A useful reference resource on the Koopman operator theory for control theorists and practitioners, the book is also of interest to graduate students, researchers, and engineers looking for an introduction to a novel and comprehensive approach to systems and control, from pure theory to data-driven methods.

Predictive Maintenance in Dynamic Systems

Download Predictive Maintenance in Dynamic Systems PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3030056457
Total Pages : 564 pages
Book Rating : 4.0/5 (3 download)

DOWNLOAD NOW!


Book Synopsis Predictive Maintenance in Dynamic Systems by : Edwin Lughofer

Download or read book Predictive Maintenance in Dynamic Systems written by Edwin Lughofer and published by Springer. This book was released on 2019-02-28 with total page 564 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a complete picture of several decision support tools for predictive maintenance. These include embedding early anomaly/fault detection, diagnosis and reasoning, remaining useful life prediction (fault prognostics), quality prediction and self-reaction, as well as optimization, control and self-healing techniques. It shows recent applications of these techniques within various types of industrial (production/utilities/equipment/plants/smart devices, etc.) systems addressing several challenges in Industry 4.0 and different tasks dealing with Big Data Streams, Internet of Things, specific infrastructures and tools, high system dynamics and non-stationary environments . Applications discussed include production and manufacturing systems, renewable energy production and management, maritime systems, power plants and turbines, conditioning systems, compressor valves, induction motors, flight simulators, railway infrastructures, mobile robots, cyber security and Internet of Things. The contributors go beyond state of the art by placing a specific focus on dynamic systems, where it is of utmost importance to update system and maintenance models on the fly to maintain their predictive power.

Modelling and Parameter Estimation of Dynamic Systems

Download Modelling and Parameter Estimation of Dynamic Systems PDF Online Free

Author :
Publisher : IET
ISBN 13 : 0863413633
Total Pages : 405 pages
Book Rating : 4.8/5 (634 download)

DOWNLOAD NOW!


Book Synopsis Modelling and Parameter Estimation of Dynamic Systems by : J.R. Raol

Download or read book Modelling and Parameter Estimation of Dynamic Systems written by J.R. Raol and published by IET. This book was released on 2004-08-13 with total page 405 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a detailed examination of the estimation techniques and modeling problems. The theory is furnished with several illustrations and computer programs to promote better understanding of system modeling and parameter estimation.

Higher Order Dynamic Mode Decomposition and Its Applications

Download Higher Order Dynamic Mode Decomposition and Its Applications PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0128227664
Total Pages : 322 pages
Book Rating : 4.1/5 (282 download)

DOWNLOAD NOW!


Book Synopsis Higher Order Dynamic Mode Decomposition and Its Applications by : Jose Manuel Vega

Download or read book Higher Order Dynamic Mode Decomposition and Its Applications written by Jose Manuel Vega and published by Academic Press. This book was released on 2020-09-22 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Higher Order Dynamic Mode Decomposition and Its Applications provides detailed background theory, as well as several fully explained applications from a range of industrial contexts to help readers understand and use this innovative algorithm. Data-driven modelling of complex systems is a rapidly evolving field, which has applications in domains including engineering, medical, biological, and physical sciences, where it is providing ground-breaking insights into complex systems that exhibit rich multi-scale phenomena in both time and space. Starting with an introductory summary of established order reduction techniques like POD, DEIM, Koopman, and DMD, this book proceeds to provide a detailed explanation of higher order DMD, and to explain its advantages over other methods. Technical details of how the HODMD can be applied to a range of industrial problems will help the reader decide how to use the method in the most appropriate way, along with example MATLAB codes and advice on how to analyse and present results. - Includes instructions for the implementation of the HODMD, MATLAB codes, and extended discussions of the algorithm - Includes descriptions of other order reduction techniques, and compares their strengths and weaknesses - Provides examples of applications involving complex flow fields, in contexts including aerospace engineering, geophysical flows, and wind turbine design

Applied Dynamic Programming for Optimization of Dynamical Systems

Download Applied Dynamic Programming for Optimization of Dynamical Systems PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 9780898718676
Total Pages : 278 pages
Book Rating : 4.7/5 (186 download)

DOWNLOAD NOW!


Book Synopsis Applied Dynamic Programming for Optimization of Dynamical Systems by : Rush D. Robinett III

Download or read book Applied Dynamic Programming for Optimization of Dynamical Systems written by Rush D. Robinett III and published by SIAM. This book was released on 2005-01-01 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on the results of over 10 years of research and development by the authors, this book presents a broad cross section of dynamic programming (DP) techniques applied to the optimization of dynamical systems. The main goal of the research effort was to develop a robust path planning/trajectory optimization tool that did not require an initial guess. The goal was partially met with a combination of DP and homotopy algorithms. DP algorithms are presented here with a theoretical development, and their successful application to variety of practical engineering problems is emphasized.

Dynamic Modeling, Predictive Control and Performance Monitoring

Download Dynamic Modeling, Predictive Control and Performance Monitoring PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 1848002335
Total Pages : 249 pages
Book Rating : 4.8/5 (48 download)

DOWNLOAD NOW!


Book Synopsis Dynamic Modeling, Predictive Control and Performance Monitoring by : Biao Huang

Download or read book Dynamic Modeling, Predictive Control and Performance Monitoring written by Biao Huang and published by Springer. This book was released on 2008-03-02 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: A typical design procedure for model predictive control or control performance monitoring consists of: 1. identification of a parametric or nonparametric model; 2. derivation of the output predictor from the model; 3. design of the control law or calculation of performance indices according to the predictor. Both design problems need an explicit model form and both require this three-step design procedure. Can this design procedure be simplified? Can an explicit model be avoided? With these questions in mind, the authors eliminate the first and second step of the above design procedure, a “data-driven” approach in the sense that no traditional parametric models are used; hence, the intermediate subspace matrices, which are obtained from the process data and otherwise identified as a first step in the subspace identification methods, are used directly for the designs. Without using an explicit model, the design procedure is simplified and the modelling error caused by parameterization is eliminated.