Convex Functional Analysis

Download Convex Functional Analysis PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3764373571
Total Pages : 238 pages
Book Rating : 4.7/5 (643 download)

DOWNLOAD NOW!


Book Synopsis Convex Functional Analysis by : Andrew J. Kurdila

Download or read book Convex Functional Analysis written by Andrew J. Kurdila and published by Springer Science & Business Media. This book was released on 2006-03-30 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is dedicated to the fundamentals of convex functional analysis. It presents those aspects of functional analysis that are extensively used in various applications to mechanics and control theory. The purpose of the text is essentially two-fold. On the one hand, a bare minimum of the theory required to understand the principles of functional, convex and set-valued analysis is presented. Numerous examples and diagrams provide as intuitive an explanation of the principles as possible. On the other hand, the volume is largely self-contained. Those with a background in graduate mathematics will find a concise summary of all main definitions and theorems.

Convex Functions and Their Applications

Download Convex Functions and Their Applications PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319783378
Total Pages : 430 pages
Book Rating : 4.3/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Convex Functions and Their Applications by : Constantin P. Niculescu

Download or read book Convex Functions and Their Applications written by Constantin P. Niculescu and published by Springer. This book was released on 2018-06-08 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thorough introduction to an important area of mathematics Contains recent results Includes many exercises

Convex Analysis

Download Convex Analysis PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 149870638X
Total Pages : 174 pages
Book Rating : 4.4/5 (987 download)

DOWNLOAD NOW!


Book Synopsis Convex Analysis by : Steven G. Krantz

Download or read book Convex Analysis written by Steven G. Krantz and published by CRC Press. This book was released on 2014-10-20 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt: Convexity is an ancient idea going back to Archimedes. Used sporadically in the mathematical literature over the centuries, today it is a flourishing area of research and a mathematical subject in its own right. Convexity is used in optimization theory, functional analysis, complex analysis, and other parts of mathematics.Convex Analysis introduces

Convex Analysis

Download Convex Analysis PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 1400873177
Total Pages : 470 pages
Book Rating : 4.4/5 (8 download)

DOWNLOAD NOW!


Book Synopsis Convex Analysis by : Ralph Tyrell Rockafellar

Download or read book Convex Analysis written by Ralph Tyrell Rockafellar and published by Princeton University Press. This book was released on 2015-04-29 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: Available for the first time in paperback, R. Tyrrell Rockafellar's classic study presents readers with a coherent branch of nonlinear mathematical analysis that is especially suited to the study of optimization problems. Rockafellar's theory differs from classical analysis in that differentiability assumptions are replaced by convexity assumptions. The topics treated in this volume include: systems of inequalities, the minimum or maximum of a convex function over a convex set, Lagrange multipliers, minimax theorems and duality, as well as basic results about the structure of convex sets and the continuity and differentiability of convex functions and saddle- functions. This book has firmly established a new and vital area not only for pure mathematics but also for applications to economics and engineering. A sound knowledge of linear algebra and introductory real analysis should provide readers with sufficient background for this book. There is also a guide for the reader who may be using the book as an introduction, indicating which parts are essential and which may be skipped on a first reading.

Convexity Theory and Its Applications in Functional Analysis

Download Convexity Theory and Its Applications in Functional Analysis PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 :
Total Pages : 288 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Convexity Theory and Its Applications in Functional Analysis by : L. Asimow

Download or read book Convexity Theory and Its Applications in Functional Analysis written by L. Asimow and published by Academic Press. This book was released on 1980 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: Separation and polar calculus; Duality in ordered banach spacrs; Simples spaces; Complex function spaces; Convexity theory for C* algebras.

Convex Analysis in General Vector Spaces

Download Convex Analysis in General Vector Spaces PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9812380671
Total Pages : 389 pages
Book Rating : 4.8/5 (123 download)

DOWNLOAD NOW!


Book Synopsis Convex Analysis in General Vector Spaces by : C. Zalinescu

Download or read book Convex Analysis in General Vector Spaces written by C. Zalinescu and published by World Scientific. This book was released on 2002 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt: The primary aim of this book is to present the conjugate and sub/differential calculus using the method of perturbation functions in order to obtain the most general results in this field. The secondary aim is to provide important applications of this calculus and of the properties of convex functions. Such applications are: the study of well-conditioned convex functions, uniformly convex and uniformly smooth convex functions, best approximation problems, characterizations of convexity, the study of the sets of weak sharp minima, well-behaved functions and the existence of global error bounds for convex inequalities, as well as the study of monotone multifunctions by using convex functions.

Functional Analysis and Applied Optimization in Banach Spaces

Download Functional Analysis and Applied Optimization in Banach Spaces PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319060740
Total Pages : 584 pages
Book Rating : 4.3/5 (19 download)

DOWNLOAD NOW!


Book Synopsis Functional Analysis and Applied Optimization in Banach Spaces by : Fabio Botelho

Download or read book Functional Analysis and Applied Optimization in Banach Spaces written by Fabio Botelho and published by Springer. This book was released on 2014-06-12 with total page 584 pages. Available in PDF, EPUB and Kindle. Book excerpt: ​This book introduces the basic concepts of real and functional analysis. It presents the fundamentals of the calculus of variations, convex analysis, duality, and optimization that are necessary to develop applications to physics and engineering problems. The book includes introductory and advanced concepts in measure and integration, as well as an introduction to Sobolev spaces. The problems presented are nonlinear, with non-convex variational formulation. Notably, the primal global minima may not be attained in some situations, in which cases the solution of the dual problem corresponds to an appropriate weak cluster point of minimizing sequences for the primal one. Indeed, the dual approach more readily facilitates numerical computations for some of the selected models. While intended primarily for applied mathematicians, the text will also be of interest to engineers, physicists, and other researchers in related fields.

Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization

Download Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9401140669
Total Pages : 218 pages
Book Rating : 4.4/5 (11 download)

DOWNLOAD NOW!


Book Synopsis Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization by : D. Butnariu

Download or read book Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization written by D. Butnariu and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this work is to present in a unified approach a series of results concerning totally convex functions on Banach spaces and their applications to building iterative algorithms for computing common fixed points of mea surable families of operators and optimization methods in infinite dimen sional settings. The notion of totally convex function was first studied by Butnariu, Censor and Reich [31] in the context of the space lRR because of its usefulness for establishing convergence of a Bregman projection method for finding common points of infinite families of closed convex sets. In this finite dimensional environment total convexity hardly differs from strict convexity. In fact, a function with closed domain in a finite dimensional Banach space is totally convex if and only if it is strictly convex. The relevancy of total convexity as a strengthened form of strict convexity becomes apparent when the Banach space on which the function is defined is infinite dimensional. In this case, total convexity is a property stronger than strict convexity but weaker than locally uniform convexity (see Section 1.3 below). The study of totally convex functions in infinite dimensional Banach spaces was started in [33] where it was shown that they are useful tools for extrapolating properties commonly known to belong to operators satisfying demanding contractivity requirements to classes of operators which are not even mildly nonexpansive.

Convex Analysis and Nonlinear Optimization

Download Convex Analysis and Nonlinear Optimization PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387312560
Total Pages : 316 pages
Book Rating : 4.3/5 (873 download)

DOWNLOAD NOW!


Book Synopsis Convex Analysis and Nonlinear Optimization by : Jonathan Borwein

Download or read book Convex Analysis and Nonlinear Optimization written by Jonathan Borwein and published by Springer Science & Business Media. This book was released on 2010-05-05 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimization is a rich and thriving mathematical discipline, and the underlying theory of current computational optimization techniques grows ever more sophisticated. This book aims to provide a concise, accessible account of convex analysis and its applications and extensions, for a broad audience. Each section concludes with an often extensive set of optional exercises. This new edition adds material on semismooth optimization, as well as several new proofs.

Convex Functions, Monotone Operators and Differentiability

Download Convex Functions, Monotone Operators and Differentiability PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540567151
Total Pages : 127 pages
Book Rating : 4.5/5 (45 download)

DOWNLOAD NOW!


Book Synopsis Convex Functions, Monotone Operators and Differentiability by : Robert R. Phelps

Download or read book Convex Functions, Monotone Operators and Differentiability written by Robert R. Phelps and published by Springer Science & Business Media. This book was released on 1993-07-29 with total page 127 pages. Available in PDF, EPUB and Kindle. Book excerpt: The improved and expanded second edition contains expositions of some major results which have been obtained in the years since the 1st edition. Theaffirmative answer by Preiss of the decades old question of whether a Banachspace with an equivalent Gateaux differentiable norm is a weak Asplund space. The startlingly simple proof by Simons of Rockafellar's fundamental maximal monotonicity theorem for subdifferentials of convex functions. The exciting new version of the useful Borwein-Preiss smooth variational principle due to Godefroy, Deville and Zizler. The material is accessible to students who have had a course in Functional Analysis; indeed, the first edition has been used in numerous graduate seminars. Starting with convex functions on the line, it leads to interconnected topics in convexity, differentiability and subdifferentiability of convex functions in Banach spaces, generic continuity of monotone operators, geometry of Banach spaces and the Radon-Nikodym property, convex analysis, variational principles and perturbed optimization. While much of this is classical, streamlined proofs found more recently are given in many instances. There are numerous exercises, many of which form an integral part of the exposition.

Discrete Convex Analysis

Download Discrete Convex Analysis PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 9780898718508
Total Pages : 411 pages
Book Rating : 4.7/5 (185 download)

DOWNLOAD NOW!


Book Synopsis Discrete Convex Analysis by : Kazuo Murota

Download or read book Discrete Convex Analysis written by Kazuo Murota and published by SIAM. This book was released on 2003-01-01 with total page 411 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discrete Convex Analysis is a novel paradigm for discrete optimization that combines the ideas in continuous optimization (convex analysis) and combinatorial optimization (matroid/submodular function theory) to establish a unified theoretical framework for nonlinear discrete optimization. The study of this theory is expanding with the development of efficient algorithms and applications to a number of diverse disciplines like matrix theory, operations research, and economics. This self-contained book is designed to provide a novel insight into optimization on discrete structures and should reveal unexpected links among different disciplines. It is the first and only English-language monograph on the theory and applications of discrete convex analysis.

Nonarchimedean Functional Analysis

Download Nonarchimedean Functional Analysis PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3662047284
Total Pages : 159 pages
Book Rating : 4.6/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Nonarchimedean Functional Analysis by : Peter Schneider

Download or read book Nonarchimedean Functional Analysis written by Peter Schneider and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 159 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book grew out of a course which I gave during the winter term 1997/98 at the Universitat Munster. The course covered the material which here is presented in the first three chapters. The fourth more advanced chapter was added to give the reader a rather complete tour through all the important aspects of the theory of locally convex vector spaces over nonarchimedean fields. There is one serious restriction, though, which seemed inevitable to me in the interest of a clear presentation. In its deeper aspects the theory depends very much on the field being spherically complete or not. To give a drastic example, if the field is not spherically complete then there exist nonzero locally convex vector spaces which do not have a single nonzero continuous linear form. Although much progress has been made to overcome this problem a really nice and complete theory which to a large extent is analogous to classical functional analysis can only exist over spherically complete field8. I therefore allowed myself to restrict to this case whenever a conceptual clarity resulted. Although I hope that thi8 text will also be useful to the experts as a reference my own motivation for giving that course and writing this book was different. I had the reader in mind who wants to use locally convex vector spaces in the applications and needs a text to quickly gra8p this theory.

Functional Analysis, Sobolev Spaces and Partial Differential Equations

Download Functional Analysis, Sobolev Spaces and Partial Differential Equations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387709142
Total Pages : 600 pages
Book Rating : 4.3/5 (877 download)

DOWNLOAD NOW!


Book Synopsis Functional Analysis, Sobolev Spaces and Partial Differential Equations by : Haim Brezis

Download or read book Functional Analysis, Sobolev Spaces and Partial Differential Equations written by Haim Brezis and published by Springer Science & Business Media. This book was released on 2010-11-02 with total page 600 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is a completely revised, updated, and expanded English edition of the important Analyse fonctionnelle (1983). In addition, it contains a wealth of problems and exercises (with solutions) to guide the reader. Uniquely, this book presents in a coherent, concise and unified way the main results from functional analysis together with the main results from the theory of partial differential equations (PDEs). Although there are many books on functional analysis and many on PDEs, this is the first to cover both of these closely connected topics. Since the French book was first published, it has been translated into Spanish, Italian, Japanese, Korean, Romanian, Greek and Chinese. The English edition makes a welcome addition to this list.

Convex Analysis and Monotone Operator Theory in Hilbert Spaces

Download Convex Analysis and Monotone Operator Theory in Hilbert Spaces PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319483110
Total Pages : 624 pages
Book Rating : 4.3/5 (194 download)

DOWNLOAD NOW!


Book Synopsis Convex Analysis and Monotone Operator Theory in Hilbert Spaces by : Heinz H. Bauschke

Download or read book Convex Analysis and Monotone Operator Theory in Hilbert Spaces written by Heinz H. Bauschke and published by Springer. This book was released on 2017-02-28 with total page 624 pages. Available in PDF, EPUB and Kindle. Book excerpt: This reference text, now in its second edition, offers a modern unifying presentation of three basic areas of nonlinear analysis: convex analysis, monotone operator theory, and the fixed point theory of nonexpansive operators. Taking a unique comprehensive approach, the theory is developed from the ground up, with the rich connections and interactions between the areas as the central focus, and it is illustrated by a large number of examples. The Hilbert space setting of the material offers a wide range of applications while avoiding the technical difficulties of general Banach spaces. The authors have also drawn upon recent advances and modern tools to simplify the proofs of key results making the book more accessible to a broader range of scholars and users. Combining a strong emphasis on applications with exceptionally lucid writing and an abundance of exercises, this text is of great value to a large audience including pure and applied mathematicians as well as researchers in engineering, data science, machine learning, physics, decision sciences, economics, and inverse problems. The second edition of Convex Analysis and Monotone Operator Theory in Hilbert Spaces greatly expands on the first edition, containing over 140 pages of new material, over 270 new results, and more than 100 new exercises. It features a new chapter on proximity operators including two sections on proximity operators of matrix functions, in addition to several new sections distributed throughout the original chapters. Many existing results have been improved, and the list of references has been updated. Heinz H. Bauschke is a Full Professor of Mathematics at the Kelowna campus of the University of British Columbia, Canada. Patrick L. Combettes, IEEE Fellow, was on the faculty of the City University of New York and of Université Pierre et Marie Curie – Paris 6 before joining North Carolina State University as a Distinguished Professor of Mathematics in 2016.

Geometric Functional Analysis and its Applications

Download Geometric Functional Analysis and its Applications PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9781468493719
Total Pages : 0 pages
Book Rating : 4.4/5 (937 download)

DOWNLOAD NOW!


Book Synopsis Geometric Functional Analysis and its Applications by : R. B. Holmes

Download or read book Geometric Functional Analysis and its Applications written by R. B. Holmes and published by Springer. This book was released on 2012-12-12 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book has evolved from my experience over the past decade in teaching and doing research in functional analysis and certain of its appli cations. These applications are to optimization theory in general and to best approximation theory in particular. The geometric nature of the subjects has greatly influenced the approach to functional analysis presented herein, especially its basis on the unifying concept of convexity. Most of the major theorems either concern or depend on properties of convex sets; the others generally pertain to conjugate spaces or compactness properties, both of which topics are important for the proper setting and resolution of optimization problems. In consequence, and in contrast to most other treatments of functional analysis, there is no discussion of spectral theory, and only the most basic and general properties of linear operators are established. Some of the theoretical highlights of the book are the Banach space theorems associated with the names of Dixmier, Krein, James, Smulian, Bishop-Phelps, Brondsted-Rockafellar, and Bessaga-Pelczynski. Prior to these (and others) we establish to two most important principles of geometric functional analysis: the extended Krein-Milman theorem and the Hahn Banach principle, the latter appearing in ten different but equivalent formula tions (some of which are optimality criteria for convex programs). In addition, a good deal of attention is paid to properties and characterizations of conjugate spaces, especially reflexive spaces.

Fundamentals of Functional Analysis

Download Fundamentals of Functional Analysis PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9401587558
Total Pages : 289 pages
Book Rating : 4.4/5 (15 download)

DOWNLOAD NOW!


Book Synopsis Fundamentals of Functional Analysis by : Semën Samsonovich Kutateladze

Download or read book Fundamentals of Functional Analysis written by Semën Samsonovich Kutateladze and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: to the English Translation This is a concise guide to basic sections of modern functional analysis. Included are such topics as the principles of Banach and Hilbert spaces, the theory of multinormed and uniform spaces, the Riesz-Dunford holomorphic functional calculus, the Fredholm index theory, convex analysis and duality theory for locally convex spaces. With standard provisos the presentation is self-contained, exposing about a h- dred famous "named" theorems furnished with complete proofs and culminating in the Gelfand-Nalmark-Segal construction for C*-algebras. The first Russian edition was printed by the Siberian Division of "Nauka" P- lishers in 1983. Since then the monograph has served as the standard textbook on functional analysis at the University of Novosibirsk. This volume is translated from the second Russian edition printed by the Sobolev Institute of Mathematics of the Siberian Division of the Russian Academy of Sciences· in 1995. It incorporates new sections on Radon measures, the Schwartz spaces of distributions, and a supplementary list of theoretical exercises and problems. This edition was typeset using AMS-'lEX, the American Mathematical Society's 'lEX system. To clear my conscience completely, I also confess that := stands for the definor, the assignment operator, signifies the end of the proof.

Functional Analysis in Asymmetric Normed Spaces

Download Functional Analysis in Asymmetric Normed Spaces PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3034804784
Total Pages : 229 pages
Book Rating : 4.0/5 (348 download)

DOWNLOAD NOW!


Book Synopsis Functional Analysis in Asymmetric Normed Spaces by : Stefan Cobzas

Download or read book Functional Analysis in Asymmetric Normed Spaces written by Stefan Cobzas and published by Springer Science & Business Media. This book was released on 2012-10-30 with total page 229 pages. Available in PDF, EPUB and Kindle. Book excerpt: An asymmetric norm is a positive definite sublinear functional p on a real vector space X. The topology generated by the asymmetric norm p is translation invariant so that the addition is continuous, but the asymmetry of the norm implies that the multiplication by scalars is continuous only when restricted to non-negative entries in the first argument. The asymmetric dual of X, meaning the set of all real-valued upper semi-continuous linear functionals on X, is merely a convex cone in the vector space of all linear functionals on X. In spite of these differences, many results from classical functional analysis have their counterparts in the asymmetric case, by taking care of the interplay between the asymmetric norm p and its conjugate. Among the positive results one can mention: Hahn–Banach type theorems and separation results for convex sets, Krein–Milman type theorems, analogs of the fundamental principles – open mapping, closed graph and uniform boundedness theorems – an analog of the Schauder’s theorem on the compactness of the conjugate mapping. Applications are given to best approximation problems and, as relevant examples, one considers normed lattices equipped with asymmetric norms and spaces of semi-Lipschitz functions on quasi-metric spaces. Since the basic topological tools come from quasi-metric spaces and quasi-uniform spaces, the first chapter of the book contains a detailed presentation of some basic results from the theory of these spaces. The focus is on results which are most used in functional analysis – completeness, compactness and Baire category – which drastically differ from those in metric or uniform spaces. The book is fairly self-contained, the prerequisites being the acquaintance with the basic results in topology and functional analysis, so it may be used for an introduction to the subject. Since new results, in the focus of current research, are also included, researchers in the area can use it as a reference text.