Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Contemporarys Number Power Geometry
Download Contemporarys Number Power Geometry full books in PDF, epub, and Kindle. Read online Contemporarys Number Power Geometry ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Spinoza's Geometry of Power by : Valtteri Viljanen
Download or read book Spinoza's Geometry of Power written by Valtteri Viljanen and published by Cambridge University Press. This book was released on 2011-09-29 with total page 209 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work examines the unique way in which Benedict de Spinoza (1632–77) combines two significant philosophical principles: that real existence requires causal power and that geometrical objects display exceptionally clearly how things have properties in virtue of their essences. Valtteri Viljanen argues that underlying Spinoza's psychology and ethics is a compelling metaphysical theory according to which each and every genuine thing is an entity of power endowed with an internal structure akin to that of geometrical objects. This allows Spinoza to offer a theory of existence and of action - human and non-human alike - as dynamic striving that takes place with the same kind of necessity and intelligibility that pertain to geometry. Viljanen's fresh and original study will interest a wide range of readers in Spinoza studies and early modern philosophy more generally.
Book Synopsis Advanced Euclidean Geometry by : Roger A. Johnson
Download or read book Advanced Euclidean Geometry written by Roger A. Johnson and published by Courier Corporation. This book was released on 2013-01-08 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: This classic text explores the geometry of the triangle and the circle, concentrating on extensions of Euclidean theory, and examining in detail many relatively recent theorems. 1929 edition.
Book Synopsis Kiselev's Geometry by : Andreĭ Petrovich Kiselev
Download or read book Kiselev's Geometry written by Andreĭ Petrovich Kiselev and published by . This book was released on 2008 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume completes the English adaptation of a classical Russian textbook in elementary Euclidean geometry. The 1st volume subtitled "Book I. Planimetry" was published in 2006 (ISBN 0977985202). This 2nd volume (Book II. Stereometry) covers solid geometry, and contains a chapter on vectors, foundations, and introduction in non-Euclidean geometry added by the translator. The book intended for high-school and college students, and their teachers. Includes 317 exercises, index, and bibliography.
Book Synopsis Contemporary's Number Power 2 by : Jerry Howett
Download or read book Contemporary's Number Power 2 written by Jerry Howett and published by . This book was released on 1988 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt: Workbook with instructions and practice in working with fractions, decimals and percents in real-life math problems and a section of answers to problems.
Book Synopsis Contemporary's Number Power: Geometry by : Robert Mitchell
Download or read book Contemporary's Number Power: Geometry written by Robert Mitchell and published by . This book was released on 1984 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: Workbook for introducing lines, angles, triangles and other plane figures, and solid figures.
Book Synopsis Sacred Mathematics by : Fukagawa Hidetoshi
Download or read book Sacred Mathematics written by Fukagawa Hidetoshi and published by Princeton University Press. This book was released on 2021-08-10 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: Between the seventeenth and nineteenth centuries Japan was totally isolated from the West by imperial decree. During that time, a unique brand of homegrown mathematics flourished, one that was completely uninfluenced by developments in Western mathematics. People from all walks of life--samurai, farmers, and merchants--inscribed a wide variety of geometry problems on wooden tablets called sangaku and hung them in Buddhist temples and Shinto shrines throughout Japan. Sacred Mathematics is the first book published in the West to fully examine this tantalizing--and incredibly beautiful--mathematical tradition. Fukagawa Hidetoshi and Tony Rothman present for the first time in English excerpts from the travel diary of a nineteenth-century Japanese mathematician, Yamaguchi Kanzan, who journeyed on foot throughout Japan to collect temple geometry problems. The authors set this fascinating travel narrative--and almost everything else that is known about temple geometry--within the broader cultural and historical context of the period. They explain the sacred and devotional aspects of sangaku, and reveal how Japanese folk mathematicians discovered many well-known theorems independently of mathematicians in the West--and in some cases much earlier. The book is generously illustrated with photographs of the tablets and stunning artwork of the period. Then there are the geometry problems themselves, nearly two hundred of them, fully illustrated and ranging from the utterly simple to the virtually impossible. Solutions for most are provided. A unique book in every respect, Sacred Mathematics demonstrates how mathematical thinking can vary by culture yet transcend cultural and geographic boundaries.
Book Synopsis Fractions, Decimals and Percents by : Jerry Howett
Download or read book Fractions, Decimals and Percents written by Jerry Howett and published by McGraw-Hill/Contemporary. This book was released on 1976 with total page 164 pages. Available in PDF, EPUB and Kindle. Book excerpt: "The real world of adult math"--Cover
Book Synopsis Number, Shape, & Symmetry by : Diane L. Herrmann
Download or read book Number, Shape, & Symmetry written by Diane L. Herrmann and published by CRC Press. This book was released on 2012-10-18 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: Through a careful treatment of number theory and geometry, Number, Shape, & Symmetry: An Introduction to Number Theory, Geometry, and Group Theory helps readers understand serious mathematical ideas and proofs. Classroom-tested, the book draws on the authors’ successful work with undergraduate students at the University of Chicago, seventh to tenth grade mathematically talented students in the University of Chicago’s Young Scholars Program, and elementary public school teachers in the Seminars for Endorsement in Science and Mathematics Education (SESAME). The first half of the book focuses on number theory, beginning with the rules of arithmetic (axioms for the integers). The authors then present all the basic ideas and applications of divisibility, primes, and modular arithmetic. They also introduce the abstract notion of a group and include numerous examples. The final topics on number theory consist of rational numbers, real numbers, and ideas about infinity. Moving on to geometry, the text covers polygons and polyhedra, including the construction of regular polygons and regular polyhedra. It studies tessellation by looking at patterns in the plane, especially those made by regular polygons or sets of regular polygons. The text also determines the symmetry groups of these figures and patterns, demonstrating how groups arise in both geometry and number theory. The book is suitable for pre-service or in-service training for elementary school teachers, general education mathematics or math for liberal arts undergraduate-level courses, and enrichment activities for high school students or math clubs.
Book Synopsis Essentials of Tropical Combinatorics by : Michael Joswig
Download or read book Essentials of Tropical Combinatorics written by Michael Joswig and published by American Mathematical Society. This book was released on 2021-12-08 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of this book is to explain, at the graduate student level, connections between tropical geometry and optimization. Building bridges between these two subject areas is fruitful in two ways. Through tropical geometry optimization algorithms become applicable to questions in algebraic geometry. Conversely, looking at topics in optimization through the tropical geometry lens adds an additional layer of structure. The author covers contemporary research topics that are relevant for applications such as phylogenetics, neural networks, combinatorial auctions, game theory, and computational complexity. This self-contained book grew out of several courses given at Technische Universität Berlin and elsewhere, and the main prerequisite for the reader is a basic knowledge in polytope theory. It contains a good number of exercises, many examples, beautiful figures, as well as explicit tools for computations using $texttt{polymake}$.
Book Synopsis Sacred Geometry for Artists, Dreamers, and Philosophers by : John Oscar Lieben
Download or read book Sacred Geometry for Artists, Dreamers, and Philosophers written by John Oscar Lieben and published by Simon and Schuster. This book was released on 2018-08-28 with total page 538 pages. Available in PDF, EPUB and Kindle. Book excerpt: An illustrated guide to harmonics--the sacred geometry principles that underlie the natural world--and its practical applications • Demonstrates how the vesica piscis is a matrix from which ideas and forms emanate, connecting cosmic time cycles, measures of space, and musical tones • Provides harmonic analyses of ancient sculpture, architecture, the solar system, the Earth-Moon relationship, and the structure of water and waves • Explains how to apply sacred geometry to create building floor plans, pottery figures, gardens, and sacred ceremonial spaces We are in the midst of a revival of an ancient way of looking at the world--an approach that enabled great civilizations of the past to bring forth inventions of great beauty and power. This school of thought--harmonics--envisioned the natural world and the solar system as an interlocking matrix of harmonious numbers, perfectly woven into the creative fabric of life and the surrounding universe. Exploring the art and science of harmonics, John Oscar Lieben shows how to create harmonious forms using the ancient tools of number, geometry, and musical tone--an approach that resonates with nature’s own ways of creation. He demonstrates many practical applications that result from the study of harmonics, providing analyses of ancient sculpture and architecture, as well as original examples of building floor plans, pottery figures based on planetary proportions, gardens based on harmonic principles, and ceremonial spaces that honor cosmic harmonies and sacred geometric relationships. Showing how harmonics can also be applied to the mysteries of time and space, the author demonstrates how the vesica piscis and many other variations of the vesica shape reveal numerical synchronicities and correspondences that connect cosmic time cycles, measures of space, and musical tones. The author applies harmonics and the “vesica construction” matrix to illustrate many of nature’s wonders, including the Earth-Moon relationship, the interactions of the Golden Number and the musical scale, and how the Flower of Life symbol connects the universal field with the pattern of raindrops falling on a pond. Offering an approach to sacred geometry that pairs the mystical with the practical, the cosmic with the earthly, the author reveals how the art and science of harmonics should be required study for both the artist and the seeker of eternal truths as well as the scientist who seeks an entrance into the sacred foundations of nature.
Book Synopsis Number Power: Addition, Subtraction, Multiplication, and Division, Student Edition by : Contemporary
Download or read book Number Power: Addition, Subtraction, Multiplication, and Division, Student Edition written by Contemporary and published by McGraw-Hill Education. This book was released on 2011-02-03 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: Each Number Power book targets a particular set of math skills with straightforward explanations, easy-to-follow, step-by-step instructions, real-life examples, and extensive reinforcement exercises.
Book Synopsis Classical Algebraic Geometry by : Igor V. Dolgachev
Download or read book Classical Algebraic Geometry written by Igor V. Dolgachev and published by Cambridge University Press. This book was released on 2012-08-16 with total page 653 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algebraic geometry has benefited enormously from the powerful general machinery developed in the latter half of the twentieth century. The cost has been that much of the research of previous generations is in a language unintelligible to modern workers, in particular, the rich legacy of classical algebraic geometry, such as plane algebraic curves of low degree, special algebraic surfaces, theta functions, Cremona transformations, the theory of apolarity and the geometry of lines in projective spaces. The author's contemporary approach makes this legacy accessible to modern algebraic geometers and to others who are interested in applying classical results. The vast bibliography of over 600 references is complemented by an array of exercises that extend or exemplify results given in the book.
Book Synopsis A Dictionary of Human Geography by : Noel Castree
Download or read book A Dictionary of Human Geography written by Noel Castree and published by Oxford University Press, USA. This book was released on 2013-04-25 with total page 594 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new dictionary provides over 2,000 clear and concise entries on human geography, covering basic terms and concepts as well as biographies, organisations, and major periods and schools. Authoritative and accessible, this is a must-have for every student of human geography, as well as for professionals and interested members of the public.
Book Synopsis Differential Geometry by : Loring W. Tu
Download or read book Differential Geometry written by Loring W. Tu and published by Springer. This book was released on 2017-06-01 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text presents a graduate-level introduction to differential geometry for mathematics and physics students. The exposition follows the historical development of the concepts of connection and curvature with the goal of explaining the Chern–Weil theory of characteristic classes on a principal bundle. Along the way we encounter some of the high points in the history of differential geometry, for example, Gauss' Theorema Egregium and the Gauss–Bonnet theorem. Exercises throughout the book test the reader’s understanding of the material and sometimes illustrate extensions of the theory. Initially, the prerequisites for the reader include a passing familiarity with manifolds. After the first chapter, it becomes necessary to understand and manipulate differential forms. A knowledge of de Rham cohomology is required for the last third of the text. Prerequisite material is contained in author's text An Introduction to Manifolds, and can be learned in one semester. For the benefit of the reader and to establish common notations, Appendix A recalls the basics of manifold theory. Additionally, in an attempt to make the exposition more self-contained, sections on algebraic constructions such as the tensor product and the exterior power are included. Differential geometry, as its name implies, is the study of geometry using differential calculus. It dates back to Newton and Leibniz in the seventeenth century, but it was not until the nineteenth century, with the work of Gauss on surfaces and Riemann on the curvature tensor, that differential geometry flourished and its modern foundation was laid. Over the past one hundred years, differential geometry has proven indispensable to an understanding of the physical world, in Einstein's general theory of relativity, in the theory of gravitation, in gauge theory, and now in string theory. Differential geometry is also useful in topology, several complex variables, algebraic geometry, complex manifolds, and dynamical systems, among other fields. The field has even found applications to group theory as in Gromov's work and to probability theory as in Diaconis's work. It is not too far-fetched to argue that differential geometry should be in every mathematician's arsenal.
Book Synopsis College Geometry by : Howard Whitley Eves
Download or read book College Geometry written by Howard Whitley Eves and published by Jones & Bartlett Learning. This book was released on 1995 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: College Geometry is divided into two parts. Part I is a sequel to basic high school geometry and introduces the reader to some of the important modern extensions of elementary geometry- extension that have largely entered into the mainstream of mathematics. Part II treats notions of geometric structure that arose with the non-Euclidean revolution in the first half of the nineteenth century.
Book Synopsis How Not to Be Wrong by : Jordan Ellenberg
Download or read book How Not to Be Wrong written by Jordan Ellenberg and published by Penguin Press. This book was released on 2014-05-29 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: A brilliant tour of mathematical thought and a guide to becoming a better thinker, How Not to Be Wrong shows that math is not just a long list of rules to be learned and carried out by rote. Math touches everything we do; It's what makes the world make sense. Using the mathematician's methods and hard-won insights-minus the jargon-professor and popular columnist Jordan Ellenberg guides general readers through his ideas with rigor and lively irreverence, infusing everything from election results to baseball to the existence of God and the psychology of slime molds with a heightened sense of clarity and wonder. Armed with the tools of mathematics, we can see the hidden structures beneath the messy and chaotic surface of our daily lives. How Not to Be Wrong shows us how--Publisher's description.
Download or read book Mapping the Futures written by John Bird and published by Routledge. This book was released on 2012-09-10 with total page 327 pages. Available in PDF, EPUB and Kindle. Book excerpt: There are now new experiences of space and time; new tensions between globalism and regionalism, socialism and consumerism, reality and spectacle; new instabilities of value, meaning and identity - a dialectic between past and future. How are we to understand these? Mapping the Futures is the first of a series which brings together cultural theorists from different disciplines to assess the implications of economic, political and social change for intellectual inquiry and cultural practice.