Computational Methods for 3D Genome Analysis

Download Computational Methods for 3D Genome Analysis PDF Online Free

Author :
Publisher : Humana
ISBN 13 : 9781071641354
Total Pages : 0 pages
Book Rating : 4.6/5 (413 download)

DOWNLOAD NOW!


Book Synopsis Computational Methods for 3D Genome Analysis by : Ryuichiro Nakato

Download or read book Computational Methods for 3D Genome Analysis written by Ryuichiro Nakato and published by Humana. This book was released on 2024-10-30 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume covers the latest methods and analytical approaches used to study the computational analysis of three-dimensional (3D) genome structure. The chapters in this book are organized into six parts. Part One discusses different NGS assays and the regulatory mechanism of 3D genome folding by SMC complexes. Part Two presents analysis workflows for Hi-C and Micro-C in different species, including human, mouse, medaka, yeast, and prokaryotes. Part Three covers methods for chromatin loop detection, sub-compartment detection, and 3D feature visualization. Part Four explores single-cell Hi-C and the cell-to-cell variability of the dynamic 3D structure. Parts Five talks about the analysis of polymer modelling to simulate the dynamic behavior of the 3D genome structure, and Part Six looks at 3D structure analysis using other omics data, including prediction of 3D genome structure from the epigenome, double-strand break-associated structure, and imaging-based 3D analysis using seqFISH. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and tools, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and thorough, Computational Methods for 3D Genome Analysis: Methods and Protocols is a valuable resource for researchers interested in using computational methods to further their studies in the nature of 3D genome organization.

Computational Methods for the Analysis of Genomic Data and Biological Processes

Download Computational Methods for the Analysis of Genomic Data and Biological Processes PDF Online Free

Author :
Publisher : MDPI
ISBN 13 : 3039437712
Total Pages : 222 pages
Book Rating : 4.0/5 (394 download)

DOWNLOAD NOW!


Book Synopsis Computational Methods for the Analysis of Genomic Data and Biological Processes by : Francisco A. Gómez Vela

Download or read book Computational Methods for the Analysis of Genomic Data and Biological Processes written by Francisco A. Gómez Vela and published by MDPI. This book was released on 2021-02-05 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent decades, new technologies have made remarkable progress in helping to understand biological systems. Rapid advances in genomic profiling techniques such as microarrays or high-performance sequencing have brought new opportunities and challenges in the fields of computational biology and bioinformatics. Such genetic sequencing techniques allow large amounts of data to be produced, whose analysis and cross-integration could provide a complete view of organisms. As a result, it is necessary to develop new techniques and algorithms that carry out an analysis of these data with reliability and efficiency. This Special Issue collected the latest advances in the field of computational methods for the analysis of gene expression data, and, in particular, the modeling of biological processes. Here we present eleven works selected to be published in this Special Issue due to their interest, quality, and originality.

Computational Methods for Analyzing and Modeling Gene Regulation and 3D Genome Organization

Download Computational Methods for Analyzing and Modeling Gene Regulation and 3D Genome Organization PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (125 download)

DOWNLOAD NOW!


Book Synopsis Computational Methods for Analyzing and Modeling Gene Regulation and 3D Genome Organization by : Anastasiya Belyaeva

Download or read book Computational Methods for Analyzing and Modeling Gene Regulation and 3D Genome Organization written by Anastasiya Belyaeva and published by . This book was released on 2021 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Biological processes from differentiation to disease progression are governed by gene regulatory mechanisms. Currently large-scale omics and imaging data sets are being collected to characterize gene regulation at every level. Such data sets present new opportunities and challenges for extracting biological insights and elucidating the gene regulatory logic of cells. In this thesis, I present computational methods for the analysis and integration of various data types used for cell profiling. Specifically, I focus on analyzing and linking gene expression with the 3D organization of the genome. First, I describe methodologies for elucidating gene regulatory mechanisms by considering multiple data modalities. I design a computational framework for identifying colocalized and coregulated chromosome regions by integrating gene expression and epigenetic marks with 3D interactions using network analysis. Then, I provide a general framework for data integration using autoencoders and apply it for the integration and translation between gene expression and chromatin images of naive T-cells. Second, I describe methods for analyzing single modalities such as contact frequency data, which measures the spatial organization of the genome, and gene expression data. Given the important role of the 3D genome organization in gene regulation, I present a methodology for reconstructing the 3D diploid conformation of the genome from contact frequency data. Given the ubiquity of gene expression data and the recent advances in single-cell RNA-sequencing technologies as well as the need for causal modeling of gene regulatory mechanisms, I then describe an algorithm as well as a software tool, difference causal inference (DCI), for learning causal gene regulatory networks from gene expression data. DCI addresses the problem of directly learning differences between causal gene regulatory networks given gene expression data from two related conditions. Finally, I shift my focus from basic biology to drug discovery. Given the current COVID19 pandemic, I present a computational drug repurposing platform that enables the identification of FDA approved compounds for drug repurposing and investigation of potential causal drug mechanisms. This framework relies on identifying drugs that reverse the signature of the infection in the space learned by an autoencoder and then uses causal inference to identify putative drug mechanisms.

Theoretical and Computational Methods in Genome Research

Download Theoretical and Computational Methods in Genome Research PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461559030
Total Pages : 332 pages
Book Rating : 4.4/5 (615 download)

DOWNLOAD NOW!


Book Synopsis Theoretical and Computational Methods in Genome Research by : Sándor Suhai

Download or read book Theoretical and Computational Methods in Genome Research written by Sándor Suhai and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: The application ofcomputational methods to solve scientific and practical problems in genome research created a new interdisciplinary area that transcends boundaries tradi tionally separating genetics, biology, mathematics, physics, and computer science. Com puters have, of course, been intensively used in the field of life sciences for many years, even before genome research started, to store and analyze DNA or protein sequences; to explore and model the three-dimensional structure, the dynamics, and the function of biopolymers; to compute genetic linkage or evolutionary processes; and more. The rapid development of new molecular and genetic technologies, combined with ambitious goals to explore the structure and function ofgenomes ofhigher organisms, has generated, how ever, not only a huge and exponentially increasing body of data but also a new class of scientific questions. The nature and complexity of these questions will also require, be yond establishing a new kind ofalliance between experimental and theoretical disciplines, the development of new generations both in computer software and hardware technolo gies. New theoretical procedures, combined with powerful computational facilities, will substantially extend the horizon of problems that genome research can attack with suc cess. Many of us still feel that computational models rationalizing experimental findings in genome research fulfill their promises more slowly than desired. There is also an uncer tainty concerning the real position of a "theoretical genome research" in the network of established disciplines integrating their efforts in this field.

Computational Methods in Genome Research

Download Computational Methods in Genome Research PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461524512
Total Pages : 230 pages
Book Rating : 4.4/5 (615 download)

DOWNLOAD NOW!


Book Synopsis Computational Methods in Genome Research by : Sándor Suhai

Download or read book Computational Methods in Genome Research written by Sándor Suhai and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: The application of computational methods to solve scientific and pratical problems in genome research created a new interdisciplinary area that transcends boundaries traditionally separating genetics, biology, mathematics, physics, and computer science. Computers have been, of course, intensively used for many year~ in the field of life sciences, even before genome research started, to store and analyze DNA or proteins sequences, to explore and model the three-dimensional structure, the dynamics and the function of biopolymers, to compute genetic linkage or evolutionary processes etc. The rapid development of new molecular and genetic technologies, combined with ambitious goals to explore the structure and function of genomes of higher organisms, has generated, however, not only a huge and burgeoning body of data but also a new class of scientific questions. The nature and complexity of these questions will require, beyond establishing a new kind of alliance between experimental and theoretical disciplines, also the development of new generations both in computer software and hardware technologies, respectively. New theoretical procedures, combined with powerful computational facilities, will substantially extend the horizon of problems that genome research can ·attack with success. Many of us still feel that computational models rationalizing experimental findings in genome research fulfil their promises more slowly than desired. There also is an uncertainity concerning the real position of a 'theoretical genome research' in the network of established disciplines integrating their efforts in this field.

Hi-C Data Analysis

Download Hi-C Data Analysis PDF Online Free

Author :
Publisher : Humana
ISBN 13 : 9781071613924
Total Pages : 0 pages
Book Rating : 4.6/5 (139 download)

DOWNLOAD NOW!


Book Synopsis Hi-C Data Analysis by : Silvio Bicciato

Download or read book Hi-C Data Analysis written by Silvio Bicciato and published by Humana. This book was released on 2022-09-04 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume details a comprehensive set of methods and tools for Hi-C data processing, analysis, and interpretation. Chapters cover applications of Hi-C to address a variety of biological problems, with a specific focus on state-of-the-art computational procedures adopted for the data analysis. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Hi-C Data Analysis: Methods and Protocols aims to help computational and molecular biologists working in the field of chromatin 3D architecture and transcription regulation.

Computational Methods for Next Generation Sequencing Data Analysis

Download Computational Methods for Next Generation Sequencing Data Analysis PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119272165
Total Pages : 464 pages
Book Rating : 4.1/5 (192 download)

DOWNLOAD NOW!


Book Synopsis Computational Methods for Next Generation Sequencing Data Analysis by : Ion Mandoiu

Download or read book Computational Methods for Next Generation Sequencing Data Analysis written by Ion Mandoiu and published by John Wiley & Sons. This book was released on 2016-09-12 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduces readers to core algorithmic techniques for next-generation sequencing (NGS) data analysis and discusses a wide range of computational techniques and applications This book provides an in-depth survey of some of the recent developments in NGS and discusses mathematical and computational challenges in various application areas of NGS technologies. The 18 chapters featured in this book have been authored by bioinformatics experts and represent the latest work in leading labs actively contributing to the fast-growing field of NGS. The book is divided into four parts: Part I focuses on computing and experimental infrastructure for NGS analysis, including chapters on cloud computing, modular pipelines for metabolic pathway reconstruction, pooling strategies for massive viral sequencing, and high-fidelity sequencing protocols. Part II concentrates on analysis of DNA sequencing data, covering the classic scaffolding problem, detection of genomic variants, including insertions and deletions, and analysis of DNA methylation sequencing data. Part III is devoted to analysis of RNA-seq data. This part discusses algorithms and compares software tools for transcriptome assembly along with methods for detection of alternative splicing and tools for transcriptome quantification and differential expression analysis. Part IV explores computational tools for NGS applications in microbiomics, including a discussion on error correction of NGS reads from viral populations, methods for viral quasispecies reconstruction, and a survey of state-of-the-art methods and future trends in microbiome analysis. Computational Methods for Next Generation Sequencing Data Analysis: Reviews computational techniques such as new combinatorial optimization methods, data structures, high performance computing, machine learning, and inference algorithms Discusses the mathematical and computational challenges in NGS technologies Covers NGS error correction, de novo genome transcriptome assembly, variant detection from NGS reads, and more This text is a reference for biomedical professionals interested in expanding their knowledge of computational techniques for NGS data analysis. The book is also useful for graduate and post-graduate students in bioinformatics.

Computational Methods for the Analysis of Genomic Data and Biological Processes

Download Computational Methods for the Analysis of Genomic Data and Biological Processes PDF Online Free

Author :
Publisher :
ISBN 13 : 9783039437726
Total Pages : 222 pages
Book Rating : 4.4/5 (377 download)

DOWNLOAD NOW!


Book Synopsis Computational Methods for the Analysis of Genomic Data and Biological Processes by : Francisco A. Gómez Vela

Download or read book Computational Methods for the Analysis of Genomic Data and Biological Processes written by Francisco A. Gómez Vela and published by . This book was released on 2021 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent decades, new technologies have made remarkable progress in helping to understand biological systems. Rapid advances in genomic profiling techniques such as microarrays or high-performance sequencing have brought new opportunities and challenges in the fields of computational biology and bioinformatics. Such genetic sequencing techniques allow large amounts of data to be produced, whose analysis and cross-integration could provide a complete view of organisms. As a result, it is necessary to develop new techniques and algorithms that carry out an analysis of these data with reliability and efficiency. This Special Issue collected the latest advances in the field of computational methods for the analysis of gene expression data, and, in particular, the modeling of biological processes. Here we present eleven works selected to be published in this Special Issue due to their interest, quality, and originality.

Theoretical and Computational Methods in Genome Research

Download Theoretical and Computational Methods in Genome Research PDF Online Free

Author :
Publisher :
ISBN 13 : 9781461559047
Total Pages : 346 pages
Book Rating : 4.5/5 (59 download)

DOWNLOAD NOW!


Book Synopsis Theoretical and Computational Methods in Genome Research by : Sandor Suhai

Download or read book Theoretical and Computational Methods in Genome Research written by Sandor Suhai and published by . This book was released on 1997-06-30 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Computational Exome and Genome Analysis

Download Computational Exome and Genome Analysis PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1498775993
Total Pages : 575 pages
Book Rating : 4.4/5 (987 download)

DOWNLOAD NOW!


Book Synopsis Computational Exome and Genome Analysis by : Peter N. Robinson

Download or read book Computational Exome and Genome Analysis written by Peter N. Robinson and published by CRC Press. This book was released on 2017-09-13 with total page 575 pages. Available in PDF, EPUB and Kindle. Book excerpt: Exome and genome sequencing are revolutionizing medical research and diagnostics, but the computational analysis of the data has become an extremely heterogeneous and often challenging area of bioinformatics. Computational Exome and Genome Analysis provides a practical introduction to all of the major areas in the field, enabling readers to develop a comprehensive understanding of the sequencing process and the entire computational analysis pipeline.

Computational Methods For Understanding Bacterial And Archaeal Genomes

Download Computational Methods For Understanding Bacterial And Archaeal Genomes PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 1908979011
Total Pages : 494 pages
Book Rating : 4.9/5 (89 download)

DOWNLOAD NOW!


Book Synopsis Computational Methods For Understanding Bacterial And Archaeal Genomes by : Ying Xu

Download or read book Computational Methods For Understanding Bacterial And Archaeal Genomes written by Ying Xu and published by World Scientific. This book was released on 2008-08-06 with total page 494 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over 500 prokaryotic genomes have been sequenced to date, and thousands more have been planned for the next few years. While these genomic sequence data provide unprecedented opportunities for biologists to study the world of prokaryotes, they also raise extremely challenging issues such as how to decode the rich information encoded in these genomes. This comprehensive volume includes a collection of cohesively written chapters on prokaryotic genomes, their organization and evolution, the information they encode, and the computational approaches needed to derive such information. A comparative view of bacterial and archaeal genomes, and how information is encoded differently in them, is also presented. Combining theoretical discussions and computational techniques, the book serves as a valuable introductory textbook for graduate-level microbial genomics and informatics courses./a

Modeling the 3D Conformation of Genomes

Download Modeling the 3D Conformation of Genomes PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1351387006
Total Pages : 370 pages
Book Rating : 4.3/5 (513 download)

DOWNLOAD NOW!


Book Synopsis Modeling the 3D Conformation of Genomes by : Guido Tiana

Download or read book Modeling the 3D Conformation of Genomes written by Guido Tiana and published by CRC Press. This book was released on 2019-01-15 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a timely summary of physical modeling approaches applied to biological datasets that describe conformational properties of chromosomes in the cell nucleus. Chapters explain how to convert raw experimental data into 3D conformations, and how to use models to better understand biophysical mechanisms that control chromosome conformation. The coverage ranges from introductory chapters to modeling aspects related to polymer physics, and data-driven models for genomic domains, the entire human genome, epigenome folding, chromosome structure and dynamics, and predicting 3D genome structure.

Computational Methods for Studying Gene Regulation and Genome Organization Using High-throughput DNA Sequencing

Download Computational Methods for Studying Gene Regulation and Genome Organization Using High-throughput DNA Sequencing PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 308 pages
Book Rating : 4.:/5 (927 download)

DOWNLOAD NOW!


Book Synopsis Computational Methods for Studying Gene Regulation and Genome Organization Using High-throughput DNA Sequencing by : Giancarlo A. Bonora

Download or read book Computational Methods for Studying Gene Regulation and Genome Organization Using High-throughput DNA Sequencing written by Giancarlo A. Bonora and published by . This book was released on 2015 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: The full sequencing of the human genome ushered in the genomics era and laid the foundation for a more comprehensive understanding of gene regulation and development. But, since the DNA sequence represents only one aspect of the genomic information housed within the nucleus, the question of exactly how it is utilized to direct developmental programs and tissue-specific gene expression is still an open one. However, rapid advances in high-throughput DNA sequencing (HTS) technologies over the past decade have allowed biologists to begin to tackle the question on a genomic scale. HTS has been coupled to bisulfite conversion of DNA for assessing cytosine methylation (bisulfite sequencing), to chromatin immunoprecipitation for ascertaining genomic locations bound by specific factors or found in a particular chromatin state (ChIP-seq), to the isolation of transcripts for the measurement of gene expression (RNA-seq), and to methods of chromosome conformation capture for the identification of genome-wide DNA-DNA interactions (4C-seq and Hi-C). The focus of my doctoral research has been the development of novel bioinformatics approaches to analyze the data produced by these technologies in order to shed light on how distinct cell identities are established and maintained. Here, I present highlights of this work in six chapters. Chapter 1 presents a study investigating DNA methylation changes going from the differentiated to pluripotent state, which shows that changes predominantly occur late in the process and are strongly associated with changes to chromatin state. Chapter 2 introduces methylation-sensitive restriction enzyme bisulfite sequencing (MREBS) as a method for assessing precise differential DNA methylation at cost comparable to RRBS, while providing additional information over a coverage area more comparable to WGBS. Chapter 3 presents a study showing that inhibition of ribonucleotide reductase decreased DNA methylation genome-wide by enhancing the incorporation of a cytidine analog into DNA. Chapter 4 describes a study showing that, for genes important to leaf senescence, temporal changes in expression closely matched changes to two histone modifications. Chapter 5 reviews cutting-edge research exploring the link between regulatory networks and genome organization. Chapter 6 describes a study showing that regulators responsible for cell identity contribute to cell type-specific genome organization.

Computational Methods for Solving Next Generation Sequencing Challenges

Download Computational Methods for Solving Next Generation Sequencing Challenges PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 89 pages
Book Rating : 4.:/5 (9 download)

DOWNLOAD NOW!


Book Synopsis Computational Methods for Solving Next Generation Sequencing Challenges by : Tamer Ali Aldwairi

Download or read book Computational Methods for Solving Next Generation Sequencing Challenges written by Tamer Ali Aldwairi and published by . This book was released on 2014 with total page 89 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this study we build solutions to three common challenges in the fields of bioinformatics through utilizing statistical methods and developing computational approaches. First, we address a common problem in genome wide association studies, which is linking genotype features within organisms of the same species to their phenotype characteristics. We specifically studied FHA domain genes in Arabidopsis thaliana distributed within Eurasian regions by clustering those plants that share similar genotype characteristics and comparing that to the regions from which they were taken. Second, we also developed a tool for calculating transposable element density within different regions of a genome. The tool is built to utilize the information provided by other transposable element annotation tools and to provide the user with a number of options for calculating the density for various genomic elements such as genes, piRNA and miRNA or for the whole genome. It also provides a detailed calculation of densities for each family and sub-family of the transposable elements. Finally, we address the problem of mapping multi reads in the genome and their effects on gene expression. To accomplish this, we implemented methods to determine the statistical significance of expression values within the genes utilizing both a unique and multi-read weighting scheme. We believe this approach provides a much more accurate measure of gene expression than existing methods such as discarding multi reads completely or assigning them randomly to a set of best assignments, while also providing a better estimation of the proper mapping locations of ambiguous reads. Overall, the solutions we built in these studies provide researchers with tools and approaches that aid in solving some of the common challenges that arise in the analysis of high throughput sequence data.

Statistical and Computational Methods for Analyzing High-Throughput Genomic Data

Download Statistical and Computational Methods for Analyzing High-Throughput Genomic Data PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 226 pages
Book Rating : 4.:/5 (858 download)

DOWNLOAD NOW!


Book Synopsis Statistical and Computational Methods for Analyzing High-Throughput Genomic Data by : Jingyi Li

Download or read book Statistical and Computational Methods for Analyzing High-Throughput Genomic Data written by Jingyi Li and published by . This book was released on 2013 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the burgeoning field of genomics, high-throughput technologies (e.g. microarrays, next-generation sequencing and label-free mass spectrometry) have enabled biologists to perform global analysis on thousands of genes, mRNAs and proteins simultaneously. Extracting useful information from enormous amounts of high-throughput genomic data is an increasingly pressing challenge to statistical and computational science. In this thesis, I will address three problems in which statistical and computational methods were used to analyze high-throughput genomic data to answer important biological questions. The first part of this thesis focuses on addressing an important question in genomics: how to identify and quantify mRNA products of gene transcription (i.e., isoforms) from next-generation mRNA sequencing (RNA-Seq) data? We developed a statistical method called Sparse Linear modeling of RNA-Seq data for Isoform Discovery and abundance Estimation (SLIDE) that employs probabilistic modeling and L1 sparse estimation to answer this ques- tion. SLIDE takes exon boundaries and RNA-Seq data as input to discern the set of mRNA isoforms that are most likely to present in an RNA-Seq sample. It is based on a linear model with a design matrix that models the sampling probability of RNA-Seq reads from different mRNA isoforms. To tackle the model unidentifiability issue, SLIDE uses a modified Lasso procedure for parameter estimation. Compared with existing deterministic isoform assembly algorithms, SLIDE considers the stochastic aspects of RNA-Seq reads in exons from different isoforms and thus has increased power in detecting more novel isoforms. Another advantage of SLIDE is its flexibility of incorporating other transcriptomic data into its model to further increase isoform discovery accuracy. SLIDE can also work downstream of other RNA-Seq assembly algorithms to integrate newly discovered genes and exons. Besides isoform discovery, SLIDE sequentially uses the same linear model to estimate the abundance of discovered isoforms. Simulation and real data studies show that SLIDE performs as well as or better than major competitors in both isoform discovery and abundance estimation. The second part of this thesis demonstrates the power of simple statistical analysis in correcting biases of system-wide protein abundance estimates and in understanding the rela- tionship between gene transcription and protein abundances. We found that proteome-wide surveys have significantly underestimated protein abundances, which differ greatly from previously published individual measurements. We corrected proteome-wide protein abundance estimates by using individual measurements of 61 housekeeping proteins, and then found that our corrected protein abundance estimates show a higher correlation and a stronger linear relationship with mRNA abundances than do the uncorrected protein data. To estimate the degree to which mRNA expression levels determine protein levels, it is critical to measure the error in protein and mRNA abundance data and to consider all genes, not only those whose protein expression is readily detected. This is a fact that previous proteome-widely surveys ignored. We took two independent approaches to re-estimate the percentage that mRNA levels explain in the variance of protein abundances. While the percentages estimated from the two approaches vary on different sets of genes, all suggest that previous protein-wide surveys have significantly underestimated the importance of transcription. In the third and final part, I will introduce a modENCODE (the Model Organism ENCyclopedia Of DNA Elements) project in which we compared developmental stages, tis- sues and cells (or cell lines) of Drosophila melanogaster and Caenorhabditis elegans, two well-studied model organisms in developmental biology. To understand the similarity of gene expression patterns throughout their development time courses is an interesting and important question in comparative genomics and evolutionary biology. The availability of modENCODE RNA-Seq data for different developmental stages, tissues and cells of the two organisms enables a transcriptome-wide comparison study to address this question. We undertook a comparison of their developmental time courses and tissues/cells, seeking com- monalities in orthologous gene expression. Our approach centers on using stage/tissue/cell- associated orthologous genes to link the two organisms. For every stage/tissue/cell in each organism, its associated genes are selected as the genes capturing specific transcriptional activities: genes highly expressed in that stage/tissue/cell but lowly expressed in a few other stages/tissues/cells. We aligned a pair of D. melanogaster and C. elegans stages/tissues/cells by a hypergeometric test, where the test statistic is the number of orthologous gene pairs associated with both stages/tissues/cells. The test is against the null hypothesis that the two stages/tissues/cells have independent sets of associated genes. We first carried out the alignment approach on pairs of stages/tissues/cells within D. melanogaster and C. elegans respectively, and the alignment results are consistent with previous findings, supporting the validity of this approach. When comparing fly with worm, we unexpectedly observed two parallel collinear alignment patterns between their developmental timecourses and several interesting alignments between their tissues and cells. Our results are the first findings regarding a comprehensive comparison between D. melanogaster and C. elegans time courses, tissues and cells.

A Study of Computational Methods to Analyze Gene Expression Data

Download A Study of Computational Methods to Analyze Gene Expression Data PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (776 download)

DOWNLOAD NOW!


Book Synopsis A Study of Computational Methods to Analyze Gene Expression Data by : Youn Hee Ko

Download or read book A Study of Computational Methods to Analyze Gene Expression Data written by Youn Hee Ko and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The recent advent of new technologies has led to huge amounts of genomic data. With these data come new opportunities to understand biological cellular processes underlying hidden regulation mechanisms and to identify disease related biomarkers for informative diagnostics. However, extracting biological insights from the immense amounts of genomic data is a challenging task. Therefore, effective and efficient computational techniques are needed to analyze and interpret genomic data. In this thesis, novel computational methods are proposed to address such challenges: a Bayesian mixture model, an extended Bayesian mixture model, and an Eigen-brain approach. The Bayesian mixture framework involves integration of the Bayesian network and the Gaussian mixture model. Based on the proposed framework and its conjunction with K-means clustering and principal component analysis (PCA), biological insights are derived such as context specific/dependent relationships and nested structures within microarray where biological replicates are encapsulated. The Bayesian mixture framework is then extended to explore posterior distributions of network space by incorporating a Markov chain Monte Carlo (MCMC) model. The extended Bayesian mixture model summarizes the sampled network structures by extracting biologically meaningful features. Finally, an Eigen-brain approach is proposed to analyze in situ hybridization data for the identification of the cell-type specific genes, which can be useful for informative blood diagnostics. Computational results with region-based clustering reveals the critical evidence for the consistency with brain anatomical structure.

Computational Methods for the Analysis of Next Generation Sequencing Data

Download Computational Methods for the Analysis of Next Generation Sequencing Data PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 186 pages
Book Rating : 4.:/5 (919 download)

DOWNLOAD NOW!


Book Synopsis Computational Methods for the Analysis of Next Generation Sequencing Data by : Wei Wang

Download or read book Computational Methods for the Analysis of Next Generation Sequencing Data written by Wei Wang and published by . This book was released on 2014 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recently, next generation sequencing (NGS) technology has emerged as a powerful approach and dramatically transformed biomedical research in an unprecedented scale. NGS is expected to replace the traditional hybridization-based microarray technology because of its affordable cost and high digital resolution. Although NGS has significantly extended the ability to study the human genome and to better understand the biology of genomes, the new technology has required profound changes to the data analysis. There is a substantial need for computational methods that allow a convenient analysis of these overwhelmingly high-throughput data sets and address an increasing number of compelling biological questions which are now approachable by NGS technology. This dissertation focuses on the development of computational methods for NGS data analyses. First, two methods are developed and implemented for detecting variants in analysis of individual or pooled DNA sequencing data. SNVer formulates variant calling as a hypothesis testing problem and employs a binomial-binomial model to test the significance of observed allele frequency by taking account of sequencing error. SNVerGUI is a GUI-based desktop tool that is built upon the SNVer model to facilitate the main users of NGS data, such as biologists, geneticists and clinicians who often lack of the programming expertise. Second, collapsing singletons strategy is explored for associating rare variants in a DNA sequencing study. Specifically, a gene-based genome-wide scan based on singleton collapsing is performed to analyze a whole genome sequencing data set, suggesting that collapsing singletons may boost signals for association studies of rare variants in sequencing study. Third, two approaches are proposed to address the 3'UTR switching problem. PolyASeeker is a novel bioinformatics pipeline for identifying polyadenylation cleavage sites from RNA sequencing data, which helps to enhance the knowledge of alternative polyadenylation mechanisms and their roles in gene regulation. A change-point model based on a likelihood ratio test is also proposed to solve such problem in analysis of RNA sequencing data. To date, this is the first method for detecting 3'UTR switching without relying on any prior knowledge of polyadenylation cleavage sites.