Collocation Methods for Volterra Integral and Related Functional Differential Equations

Download Collocation Methods for Volterra Integral and Related Functional Differential Equations PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521806152
Total Pages : 620 pages
Book Rating : 4.8/5 (61 download)

DOWNLOAD NOW!


Book Synopsis Collocation Methods for Volterra Integral and Related Functional Differential Equations by : Hermann Brunner

Download or read book Collocation Methods for Volterra Integral and Related Functional Differential Equations written by Hermann Brunner and published by Cambridge University Press. This book was released on 2004-11-15 with total page 620 pages. Available in PDF, EPUB and Kindle. Book excerpt: Collocation based on piecewise polynomial approximation represents a powerful class of methods for the numerical solution of initial-value problems for functional differential and integral equations arising in a wide spectrum of applications, including biological and physical phenomena. The present book introduces the reader to the general principles underlying these methods and then describes in detail their convergence properties when applied to ordinary differential equations, functional equations with (Volterra type) memory terms, delay equations, and differential-algebraic and integral-algebraic equations. Each chapter starts with a self-contained introduction to the relevant theory of the class of equations under consideration. Numerous exercises and examples are supplied, along with extensive historical and bibliographical notes utilising the vast annotated reference list of over 1300 items. In sum, Hermann Brunner has written a treatise that can serve as an introduction for students, a guide for users, and a comprehensive resource for experts.

Volterra Integral Equations

Download Volterra Integral Equations PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1316982653
Total Pages : 405 pages
Book Rating : 4.3/5 (169 download)

DOWNLOAD NOW!


Book Synopsis Volterra Integral Equations by : Hermann Brunner

Download or read book Volterra Integral Equations written by Hermann Brunner and published by Cambridge University Press. This book was released on 2017-01-20 with total page 405 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a comprehensive introduction to the theory of linear and nonlinear Volterra integral equations (VIEs), ranging from Volterra's fundamental contributions and the resulting classical theory to more recent developments that include Volterra functional integral equations with various kinds of delays, VIEs with highly oscillatory kernels, and VIEs with non-compact operators. It will act as a 'stepping stone' to the literature on the advanced theory of VIEs, bringing the reader to the current state of the art in the theory. Each chapter contains a large number of exercises, extending from routine problems illustrating or complementing the theory to challenging open research problems. The increasingly important role of VIEs in the mathematical modelling of phenomena where memory effects play a key role is illustrated with some 30 concrete examples, and the notes at the end of each chapter feature complementary references as a guide to further reading.

Spectral Methods

Download Spectral Methods PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540710418
Total Pages : 481 pages
Book Rating : 4.5/5 (47 download)

DOWNLOAD NOW!


Book Synopsis Spectral Methods by : Jie Shen

Download or read book Spectral Methods written by Jie Shen and published by Springer Science & Business Media. This book was released on 2011-08-25 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: Along with finite differences and finite elements, spectral methods are one of the three main methodologies for solving partial differential equations on computers. This book provides a detailed presentation of basic spectral algorithms, as well as a systematical presentation of basic convergence theory and error analysis for spectral methods. Readers of this book will be exposed to a unified framework for designing and analyzing spectral algorithms for a variety of problems, including in particular high-order differential equations and problems in unbounded domains. The book contains a large number of figures which are designed to illustrate various concepts stressed in the book. A set of basic matlab codes has been made available online to help the readers to develop their own spectral codes for their specific applications.

Solving ODEs with MATLAB

Download Solving ODEs with MATLAB PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521530941
Total Pages : 276 pages
Book Rating : 4.5/5 (39 download)

DOWNLOAD NOW!


Book Synopsis Solving ODEs with MATLAB by : Lawrence F. Shampine

Download or read book Solving ODEs with MATLAB written by Lawrence F. Shampine and published by Cambridge University Press. This book was released on 2003-04-28 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: This concise text, first published in 2003, is for a one-semester course for upper-level undergraduates and beginning graduate students in engineering, science, and mathematics, and can also serve as a quick reference for professionals. The major topics in ordinary differential equations, initial value problems, boundary value problems, and delay differential equations, are usually taught in three separate semester-long courses. This single book provides a sound treatment of all three in fewer than 300 pages. Each chapter begins with a discussion of the 'facts of life' for the problem, mainly by means of examples. Numerical methods for the problem are then developed, but only those methods most widely used. The treatment of each method is brief and technical issues are minimized, but all the issues important in practice and for understanding the codes are discussed. The last part of each chapter is a tutorial that shows how to solve problems by means of small, but realistic, examples.

Numerical Methods for Delay Differential Equations

Download Numerical Methods for Delay Differential Equations PDF Online Free

Author :
Publisher : OUP Oxford
ISBN 13 : 0191523135
Total Pages : 410 pages
Book Rating : 4.1/5 (915 download)

DOWNLOAD NOW!


Book Synopsis Numerical Methods for Delay Differential Equations by : Alfredo Bellen

Download or read book Numerical Methods for Delay Differential Equations written by Alfredo Bellen and published by OUP Oxford. This book was released on 2003-03-20 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main purpose of the book is to introduce the readers to the numerical integration of the Cauchy problem for delay differential equations (DDEs). Peculiarities and differences that DDEs exhibit with respect to ordinary differential equations are preliminarily outlined by numerous examples illustrating some unexpected, and often surprising, behaviours of the analytical and numerical solutions. The effect of various kinds of delays on the regularity of the solution is described and some essential existence and uniqueness results are reported. The book is centered on the use of Runge-Kutta methods continuously extended by polynomial interpolation, includes a brief review of the various approaches existing in the literature, and develops an exhaustive error and well-posedness analysis for the general classes of one-step and multistep methods. The book presents a comprehensive development of continuous extensions of Runge-Kutta methods which are of interest also in the numerical treatment of more general problems such as dense output, discontinuous equations, etc. Some deeper insight into convergence and superconvergence of continuous Runge-Kutta methods is carried out for DDEs with various kinds of delays. The stepsize control mechanism is also developed on a firm mathematical basis relying on the discrete and continuous local error estimates. Classical results and a unconventional analysis of "stability with respect to forcing term" is reviewed for ordinary differential equations in view of the subsequent numerical stability analysis. Moreover, an exhaustive description of stability domains for some test DDEs is carried out and the corresponding stability requirements for the numerical methods are assessed and investigated. Alternative approaches, based on suitable formulation of DDEs as partial differential equations and subsequent semidiscretization are briefly described and compared with the classical approach. A list of available codes is provided, and illustrative examples, pseudo-codes and numerical experiments are included throughout the book.

Introduction to Integral Equations with Applications

Download Introduction to Integral Equations with Applications PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 280 pages
Book Rating : 4.:/5 (44 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Integral Equations with Applications by : Abdul J. Jerri

Download or read book Introduction to Integral Equations with Applications written by Abdul J. Jerri and published by . This book was released on 1985 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: Abdul Jerri has revised his highly applied book to make it even more useful for scientists and engineers, as well as mathematicians. Covering the fundamental ideas and techniques at a level accessible to anyone with a solid undergraduate background in calculus and differential equations, Dr. Jerri clearly demonstrates how to use integral equations to solve real-world engineering and physics problems. This edition provides precise guidelines to the basic methods of solutions, details more varied numerical methods, and substantially boosts the total of practical examples and exercises. Plus, it features added emphasis on the basic theorems for the existence and uniqueness of solutions of integral equations and points out the interrelation between differentiation and integration.

Linear and Nonlinear Integral Equations

Download Linear and Nonlinear Integral Equations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642214495
Total Pages : 639 pages
Book Rating : 4.6/5 (422 download)

DOWNLOAD NOW!


Book Synopsis Linear and Nonlinear Integral Equations by : Abdul-Majid Wazwaz

Download or read book Linear and Nonlinear Integral Equations written by Abdul-Majid Wazwaz and published by Springer Science & Business Media. This book was released on 2011-11-24 with total page 639 pages. Available in PDF, EPUB and Kindle. Book excerpt: Linear and Nonlinear Integral Equations: Methods and Applications is a self-contained book divided into two parts. Part I offers a comprehensive and systematic treatment of linear integral equations of the first and second kinds. The text brings together newly developed methods to reinforce and complement the existing procedures for solving linear integral equations. The Volterra integral and integro-differential equations, the Fredholm integral and integro-differential equations, the Volterra-Fredholm integral equations, singular and weakly singular integral equations, and systems of these equations, are handled in this part by using many different computational schemes. Selected worked-through examples and exercises will guide readers through the text. Part II provides an extensive exposition on the nonlinear integral equations and their varied applications, presenting in an accessible manner a systematic treatment of ill-posed Fredholm problems, bifurcation points, and singular points. Selected applications are also investigated by using the powerful Padé approximants. This book is intended for scholars and researchers in the fields of physics, applied mathematics and engineering. It can also be used as a text for advanced undergraduate and graduate students in applied mathematics, science and engineering, and related fields. Dr. Abdul-Majid Wazwaz is a Professor of Mathematics at Saint Xavier University in Chicago, Illinois, USA.

New Trends in Differential and Difference Equations and Applications

Download New Trends in Differential and Difference Equations and Applications PDF Online Free

Author :
Publisher : MDPI
ISBN 13 : 3039215388
Total Pages : 198 pages
Book Rating : 4.0/5 (392 download)

DOWNLOAD NOW!


Book Synopsis New Trends in Differential and Difference Equations and Applications by : Feliz Manuel Minhós

Download or read book New Trends in Differential and Difference Equations and Applications written by Feliz Manuel Minhós and published by MDPI. This book was released on 2019-10-14 with total page 198 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Special Issue aims to be a compilation of new results in the areas of differential and difference Equations, covering boundary value problems, systems of differential and difference equations, as well as analytical and numerical methods. The objective is to provide an overview of techniques used in these different areas and to emphasize their applicability to real-life phenomena, by the inclusion of examples. These examples not only clarify the theoretical results presented, but also provide insight on how to apply, for future works, the techniques used.

Multidimensional Weakly Singular Integral Equations

Download Multidimensional Weakly Singular Integral Equations PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 354047773X
Total Pages : 169 pages
Book Rating : 4.5/5 (44 download)

DOWNLOAD NOW!


Book Synopsis Multidimensional Weakly Singular Integral Equations by : Gennadi Vainikko

Download or read book Multidimensional Weakly Singular Integral Equations written by Gennadi Vainikko and published by Springer. This book was released on 2006-11-15 with total page 169 pages. Available in PDF, EPUB and Kindle. Book excerpt: The final aim of the book is to construct effective discretization methods to solve multidimensional weakly singular integral equations of the second kind on a region of Rn e.g. equations arising in the radiation transfer theory. To this end, the smoothness of the solution is examined proposing sharp estimates of the growth of the derivatives of the solution near the boundary G. The superconvergence effect of collocation methods at the collocation points is established. This is a book for graduate students and researchers in the fields of analysis, integral equations, mathematical physics and numerical methods. No special knowledge beyond standard undergraduate courses is assumed.

Weighted Inequalities of Hardy Type

Download Weighted Inequalities of Hardy Type PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9789812381958
Total Pages : 380 pages
Book Rating : 4.3/5 (819 download)

DOWNLOAD NOW!


Book Synopsis Weighted Inequalities of Hardy Type by : Alois Kufner

Download or read book Weighted Inequalities of Hardy Type written by Alois Kufner and published by World Scientific. This book was released on 2003 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: Inequalities play an important role in almost all branches of mathematics as well as in other areas of science and engineering. This book surveys the present state of the theory of weighted integral inequalities of Hardy type, including modifications concerning Hardy-Steklov operators, and some basic results about Hardy type inequalities and their limit (Carleman-Knopp type) inequalities. It also describes some rather new fields such as higher order and fractional order Hardy type inequalities and integral inequalities on the cone of monotone functions together with some applications and open problems. The book can serve as a reference and a source of inspiration for researchers working in these and related areas, but could also be used for advanced graduate courses.

Spectral and High-order Methods with Applications

Download Spectral and High-order Methods with Applications PDF Online Free

Author :
Publisher :
ISBN 13 : 9787030177223
Total Pages : 224 pages
Book Rating : 4.1/5 (772 download)

DOWNLOAD NOW!


Book Synopsis Spectral and High-order Methods with Applications by : Jie Shen

Download or read book Spectral and High-order Methods with Applications written by Jie Shen and published by . This book was released on 2006 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: 中国科学院科学出版基金资助出版。

Spectral Methods

Download Spectral Methods PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540307265
Total Pages : 585 pages
Book Rating : 4.5/5 (43 download)

DOWNLOAD NOW!


Book Synopsis Spectral Methods by : Claudio Canuto

Download or read book Spectral Methods written by Claudio Canuto and published by Springer Science & Business Media. This book was released on 2007-09-23 with total page 585 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the publication of "Spectral Methods in Fluid Dynamics" 1988, spectral methods have become firmly established as a mainstream tool for scientific and engineering computation. The authors of that book have incorporated into this new edition the many improvements in the algorithms and the theory of spectral methods that have been made since then. This latest book retains the tight integration between the theoretical and practical aspects of spectral methods, and the chapters are enhanced with material on the Galerkin with numerical integration version of spectral methods. The discussion of direct and iterative solution methods is also greatly expanded.

Analytical and Numerical Methods for Volterra Equations

Download Analytical and Numerical Methods for Volterra Equations PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 9781611970852
Total Pages : 240 pages
Book Rating : 4.9/5 (78 download)

DOWNLOAD NOW!


Book Synopsis Analytical and Numerical Methods for Volterra Equations by : Peter Linz

Download or read book Analytical and Numerical Methods for Volterra Equations written by Peter Linz and published by SIAM. This book was released on 1985-01-01 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents an aspect of activity in integral equations methods for the solution of Volterra equations for those who need to solve real-world problems. Since there are few known analytical methods leading to closed-form solutions, the emphasis is on numerical techniques. The major points of the analytical methods used to study the properties of the solution are presented in the first part of the book. These techniques are important for gaining insight into the qualitative behavior of the solutions and for designing effective numerical methods. The second part of the book is devoted entirely to numerical methods. The author has chosen the simplest possible setting for the discussion, the space of real functions of real variables. The text is supplemented by examples and exercises.

Acta Numerica 2004: Volume 13

Download Acta Numerica 2004: Volume 13 PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521838115
Total Pages : 450 pages
Book Rating : 4.8/5 (381 download)

DOWNLOAD NOW!


Book Synopsis Acta Numerica 2004: Volume 13 by : Arieh Iserles

Download or read book Acta Numerica 2004: Volume 13 written by Arieh Iserles and published by Cambridge University Press. This book was released on 2004-06-03 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: An annual volume presenting substantive survey articles in numerical mathematics and scientific computing.

Inequalities Involving Functions and Their Integrals and Derivatives

Download Inequalities Involving Functions and Their Integrals and Derivatives PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9780792313304
Total Pages : 606 pages
Book Rating : 4.3/5 (133 download)

DOWNLOAD NOW!


Book Synopsis Inequalities Involving Functions and Their Integrals and Derivatives by : Dragoslav S. Mitrinovic

Download or read book Inequalities Involving Functions and Their Integrals and Derivatives written by Dragoslav S. Mitrinovic and published by Springer Science & Business Media. This book was released on 1991-07-31 with total page 606 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume provides a comprehensive, up-to-date survey of inequalities that involve a relationship between a function and its derivatives or integrals. The book is divided into 18 chapters, some of which are devoted to specific inequalities such as those of Kolmogorov-Landau, Wirtinger, Hardy, Carlson, Hilbert, Caplygin, Lyapunov, Gronwell and others. Over 800 references to the literature are cited; proofs are given when these provide insight into the general methods involved; and applications, especially to the theory of differential equations, are mentioned when appropriate. This volume will interest all those whose work involves differential and integral equations. It can also be recommended as a supplementary text.

Impact

Download Impact PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 0486420043
Total Pages : 417 pages
Book Rating : 4.4/5 (864 download)

DOWNLOAD NOW!


Book Synopsis Impact by : Werner Goldsmith

Download or read book Impact written by Werner Goldsmith and published by Courier Corporation. This book was released on 2001-11-01 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: Carefully organized, skillfully written text examines stereomechanical impact; vibrational aspects of impact; contact phenomena produced by the impact of elastic bodies; dynamic processes involving plastic strains; results of impact experiments and dynamic properties of materials. Well-illustrated treatment presumes some knowledge of partial differential equations, operational calculus, and elasticity. 284 illustrations.

Galerkin Finite Element Methods for Parabolic Problems

Download Galerkin Finite Element Methods for Parabolic Problems PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3662033593
Total Pages : 310 pages
Book Rating : 4.6/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Galerkin Finite Element Methods for Parabolic Problems by : Vidar Thomee

Download or read book Galerkin Finite Element Methods for Parabolic Problems written by Vidar Thomee and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: My purpose in this monograph is to present an essentially self-contained account of the mathematical theory of Galerkin finite element methods as applied to parabolic partial differential equations. The emphases and selection of topics reflects my own involvement in the field over the past 25 years, and my ambition has been to stress ideas and methods of analysis rather than to describe the most general and farreaching results possible. Since the formulation and analysis of Galerkin finite element methods for parabolic problems are generally based on ideas and results from the corresponding theory for stationary elliptic problems, such material is often included in the presentation. The basis of this work is my earlier text entitled Galerkin Finite Element Methods for Parabolic Problems, Springer Lecture Notes in Mathematics, No. 1054, from 1984. This has been out of print for several years, and I have felt a need and been encouraged by colleagues and friends to publish an updated version. In doing so I have included most of the contents of the 14 chapters of the earlier work in an updated and revised form, and added four new chapters, on semigroup methods, on multistep schemes, on incomplete iterative solution of the linear algebraic systems at the time levels, and on semilinear equations. The old chapters on fully discrete methods have been reworked by first treating the time discretization of an abstract differential equation in a Hilbert space setting, and the chapter on the discontinuous Galerkin method has been completely rewritten.