Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
C Algebras
Download C Algebras full books in PDF, epub, and Kindle. Read online C Algebras ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author :Kenneth R. Davidson Publisher :American Mathematical Society, Fields Institute ISBN 13 :1470475081 Total Pages :325 pages Book Rating :4.4/5 (74 download)
Book Synopsis C*-Algebras by Example by : Kenneth R. Davidson
Download or read book C*-Algebras by Example written by Kenneth R. Davidson and published by American Mathematical Society, Fields Institute. This book was released on 2023-10-04 with total page 325 pages. Available in PDF, EPUB and Kindle. Book excerpt: The subject of C*-algebras received a dramatic revitalization in the 1970s by the introduction of topological methods through the work of Brown, Douglas, and Fillmore on extensions of C*-algebras and Elliott's use of $K$-theory to provide a useful classification of AF algebras. These results were the beginning of a marvelous new set of tools for analyzing concrete C*-algebras. This book is an introductory graduate level text which presents the basics of the subject through a detailed analysis of several important classes of C*-algebras. The development of operator algebras in the last twenty years has been based on a careful study of these special classes. While there are many books on C*-algebras and operator algebras available, this is the first one to attempt to explain the real examples that researchers use to test their hypotheses. Topics include AF algebras, Bunce–Deddens and Cuntz algebras, the Toeplitz algebra, irrational rotation algebras, group C*-algebras, discrete crossed products, abelian C*-algebras (spectral theory and approximate unitary equivalence) and extensions. It also introduces many modern concepts and results in the subject such as real rank zero algebras, topological stable rank, quasidiagonality, and various new constructions. These notes were compiled during the author's participation in the special year on C*-algebras at The Fields Institute for Research in Mathematical Sciences during the 1994–1995 academic year. The field of C*-algebras touches upon many other areas of mathematics such as group representations, dynamical systems, physics, $K$-theory, and topology. The variety of examples offered in this text expose the student to many of these connections. Graduate students with a solid course in functional analysis should be able to read this book. This should prepare them to read much of the current literature. This book is reasonably self-contained, and the author has provided results from other areas when necessary.
Book Synopsis C*-Algebras and W*-Algebras by : Shoichiro Sakai
Download or read book C*-Algebras and W*-Algebras written by Shoichiro Sakai and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 271 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the reviews: "This book is an excellent and comprehensive survey of the theory of von Neumann algebras. It includes all the fundamental results of the subject, and is a valuable reference for both the beginner and the expert." Mathematical Reviews
Book Synopsis An Introduction to C*-Algebras and the Classification Program by : Karen R. Strung
Download or read book An Introduction to C*-Algebras and the Classification Program written by Karen R. Strung and published by Springer Nature. This book was released on 2020-12-15 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is directed towards graduate students that wish to start from the basic theory of C*-algebras and advance to an overview of some of the most spectacular results concerning the structure of nuclear C*-algebras. The text is divided into three parts. First, elementary notions, classical theorems and constructions are developed. Then, essential examples in the theory, such as crossed products and the class of quasidiagonal C*-algebras, are examined, and finally, the Elliott invariant, the Cuntz semigroup, and the Jiang-Su algebra are defined. It is shown how these objects have played a fundamental role in understanding the fine structure of nuclear C*-algebras. To help understanding the theory, plenty of examples, treated in detail, are included. This volume will also be valuable to researchers in the area as a reference guide. It contains an extensive reference list to guide readers that wish to travel further.
Book Synopsis C*-Algebras and Operator Theory by : Gerald J. Murphy
Download or read book C*-Algebras and Operator Theory written by Gerald J. Murphy and published by Academic Press. This book was released on 2014-06-28 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes a first- or second-year graduate course in operator theory. It is a field that has great importance for other areas of mathematics and physics, such as algebraic topology, differential geometry, and quantum mechanics. It assumes a basic knowledge in functional analysis but no prior acquaintance with operator theory is required.
Book Synopsis $\textrm {C}^*$-Algebras and Finite-Dimensional Approximations by : Nathanial Patrick Brown
Download or read book $\textrm {C}^*$-Algebras and Finite-Dimensional Approximations written by Nathanial Patrick Brown and published by American Mathematical Soc.. This book was released on 2008 with total page 530 pages. Available in PDF, EPUB and Kindle. Book excerpt: $\textrm{C}*$-approximation theory has provided the foundation for many of the most important conceptual breakthroughs and applications of operator algebras. This book systematically studies (most of) the numerous types of approximation properties that have been important in recent years: nuclearity, exactness, quasidiagonality, local reflexivity, and others. Moreover, it contains user-friendly proofs, insofar as that is possible, of many fundamental results that were previously quite hard to extract from the literature. Indeed, perhaps the most important novelty of the first ten chapters is an earnest attempt to explain some fundamental, but difficult and technical, results as painlessly as possible. The latter half of the book presents related topics and applications--written with researchers and advanced, well-trained students in mind. The authors have tried to meet the needs both of students wishing to learn the basics of an important area of research as well as researchers who desire a fairly comprehensive reference for the theory and applications of $\textrm{C}*$-approximation theory.
Book Synopsis Classification of Nuclear C*-Algebras. Entropy in Operator Algebras by : M. Rordam
Download or read book Classification of Nuclear C*-Algebras. Entropy in Operator Algebras written by M. Rordam and published by Springer Science & Business Media. This book was released on 2013-04-18 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: to the Encyclopaedia Subseries on Operator Algebras and Non-Commutative Geometry The theory of von Neumann algebras was initiated in a series of papers by Murray and von Neumann in the 1930's and 1940's. A von Neumann algebra is a self-adjoint unital subalgebra M of the algebra of bounded operators of a Hilbert space which is closed in the weak operator topology. According to von Neumann's bicommutant theorem, M is closed in the weak operator topology if and only if it is equal to the commutant of its commutant. Afactor is a von Neumann algebra with trivial centre and the work of Murray and von Neumann contained a reduction of all von Neumann algebras to factors and a classification of factors into types I, II and III. C* -algebras are self-adjoint operator algebras on Hilbert space which are closed in the norm topology. Their study was begun in the work of Gelfand and Naimark who showed that such algebras can be characterized abstractly as involutive Banach algebras, satisfying an algebraic relation connecting the norm and the involution. They also obtained the fundamental result that a commutative unital C* -algebra is isomorphic to the algebra of complex valued continuous functions on a compact space - its spectrum. Since then the subject of operator algebras has evolved into a huge mathematical endeavour interacting with almost every branch of mathematics and several areas of theoretical physics.
Book Synopsis An Invitation to C*-Algebras by : W. Arveson
Download or read book An Invitation to C*-Algebras written by W. Arveson and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 117 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives an introduction to C*-algebras and their representations on Hilbert spaces. We have tried to present only what we believe are the most basic ideas, as simply and concretely as we could. So whenever it is convenient (and it usually is), Hilbert spaces become separable and C*-algebras become GCR. This practice probably creates an impression that nothing of value is known about other C*-algebras. Of course that is not true. But insofar as representations are con cerned, we can point to the empirical fact that to this day no one has given a concrete parametric description of even the irreducible representations of any C*-algebra which is not GCR. Indeed, there is metamathematical evidence which strongly suggests that no one ever will (see the discussion at the end of Section 3. 4). Occasionally, when the idea behind the proof of a general theorem is exposed very clearly in a special case, we prove only the special case and relegate generalizations to the exercises. In effect, we have systematically eschewed the Bourbaki tradition. We have also tried to take into account the interests of a variety of readers. For example, the multiplicity theory for normal operators is contained in Sections 2. 1 and 2. 2. (it would be desirable but not necessary to include Section 1. 1 as well), whereas someone interested in Borel structures could read Chapter 3 separately. Chapter I could be used as a bare-bones introduction to C*-algebras. Sections 2.
Book Synopsis Combinatorial Set Theory of C*-algebras by : Ilijas Farah
Download or read book Combinatorial Set Theory of C*-algebras written by Ilijas Farah and published by Springer Nature. This book was released on 2019-12-24 with total page 535 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores and highlights the fertile interaction between logic and operator algebras, which in recent years has led to the resolution of several long-standing open problems on C*-algebras. The interplay between logic and operator algebras (C*-algebras, in particular) is relatively young and the author is at the forefront of this interaction. The deep level of scholarship contained in these pages is evident and opens doors to operator algebraists interested in learning about the set-theoretic methods relevant to their field, as well as to set-theorists interested in expanding their view to the non-commutative realm of operator algebras. Enough background is included from both subjects to make the book a convenient, self-contained source for students. A fair number of the exercises form an integral part of the text. They are chosen to widen and deepen the material from the corresponding chapters. Some other exercises serve as a warmup for the latter chapters.
Book Synopsis Operator Algebras by : Bruce Blackadar
Download or read book Operator Algebras written by Bruce Blackadar and published by Taylor & Francis. This book was released on 2006 with total page 552 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a comprehensive introduction to the general theory of C*-algebras and von Neumann algebras. Beginning with the basics, the theory is developed through such topics as tensor products, nuclearity and exactness, crossed products, K-theory, and quasidiagonality. The presentation carefully and precisely explains the main features of each part of the theory of operator algebras; most important arguments are at least outlined and many are presented in full detail.
Book Synopsis A Groupoid Approach to C*-Algebras by : Jean Renault
Download or read book A Groupoid Approach to C*-Algebras written by Jean Renault and published by Springer. This book was released on 2006-11-15 with total page 164 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis An Introduction to K-Theory for C*-Algebras by : M. Rørdam
Download or read book An Introduction to K-Theory for C*-Algebras written by M. Rørdam and published by Cambridge University Press. This book was released on 2000-07-20 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a very elementary introduction to K-theory for C*-algebras, and is ideal for beginning graduate students.
Book Synopsis C*-algebras and Their Automorphism Groups by : Gert Kjaergård Pedersen
Download or read book C*-algebras and Their Automorphism Groups written by Gert Kjaergård Pedersen and published by . This book was released on 1979 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Local Multipliers of C*-Algebras by : Pere Ara
Download or read book Local Multipliers of C*-Algebras written by Pere Ara and published by Springer Science & Business Media. This book was released on 2002-10-07 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many problems in operator theory lead to the consideration ofoperator equa tions, either directly or via some reformulation. More often than not, how ever, the underlying space is too 'small' to contain solutions of these equa tions and thus it has to be 'enlarged' in some way. The Berberian-Quigley enlargement of a Banach space, which allows one to convert approximate into genuine eigenvectors, serves as a classical example. In the theory of operator algebras, a C*-algebra A that turns out to be small in this sense tradition ally is enlarged to its (universal) enveloping von Neumann algebra A". This works well since von Neumann algebras are in many respects richer and, from the Banach space point of view, A" is nothing other than the second dual space of A. Among the numerous fruitful applications of this principle is the well-known Kadison-Sakai theorem ensuring that every derivation 8 on a C*-algebra A becomes inner in A", though 8 may not be inner in A. The transition from A to A" however is not an algebraic one (and cannot be since it is well known that the property of being a von Neumann algebra cannot be described purely algebraically). Hence, ifthe C*-algebra A is small in an algebraic sense, say simple, it may be inappropriate to move on to A". In such a situation, A is typically enlarged by its multiplier algebra M(A).
Book Synopsis Dimensions and $C^\ast $-Algebras by : Edward G. Effros
Download or read book Dimensions and $C^\ast $-Algebras written by Edward G. Effros and published by American Mathematical Soc.. This book was released on 1981 with total page 90 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discusses elementary algebras and $C DEGREES*$-algebras, namely those which are direct limits of complex semi simple al
Book Synopsis An Introduction to the Classification of Amenable C*-algebras by : Huaxin Lin
Download or read book An Introduction to the Classification of Amenable C*-algebras written by Huaxin Lin and published by World Scientific. This book was released on 2001 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory and applications of C Oeu -algebras are related to fields ranging from operator theory, group representations and quantum mechanics, to non-commutative geometry and dynamical systems. By Gelfand transformation, the theory of C Oeu -algebras is also regarded as non-commutative topology. About a decade ago, George A. Elliott initiated the program of classification of C Oeu -algebras (up to isomorphism) by their K -theoretical data. It started with the classification of AT -algebras with real rank zero. Since then great efforts have been made to classify amenable C Oeu -algebras, a class of C Oeu -algebras that arises most naturally. For example, a large class of simple amenable C Oeu -algebras is discovered to be classifiable. The application of these results to dynamical systems has been established. This book introduces the recent development of the theory of the classification of amenable C Oeu -algebras OCo the first such attempt. The first three chapters present the basics of the theory of C Oeu -algebras which are particularly important to the theory of the classification of amenable C Oeu -algebras. Chapter 4 otters the classification of the so-called AT -algebras of real rank zero. The first four chapters are self-contained, and can serve as a text for a graduate course on C Oeu -algebras. The last two chapters contain more advanced material. In particular, they deal with the classification theorem for simple AH -algebras with real rank zero, the work of Elliott and Gong. The book contains many new proofs and some original results related to the classification of amenable C Oeu -algebras. Besides being as an introduction to the theory of the classification of amenable C Oeu -algebras, it is a comprehensive reference for those more familiar with the subject. Sample Chapter(s). Chapter 1.1: Banach algebras (260 KB). Chapter 1.2: C*-algebras (210 KB). Chapter 1.3: Commutative C*-algebras (212 KB). Chapter 1.4: Positive cones (207 KB). Chapter 1.5: Approximate identities, hereditary C*-subalgebras and quotients (230 KB). Chapter 1.6: Positive linear functionals and a Gelfand-Naimark theorem (235 KB). Chapter 1.7: Von Neumann algebras (234 KB). Chapter 1.8: Enveloping von Neumann algebras and the spectral theorem (217 KB). Chapter 1.9: Examples of C*-algebras (270 KB). Chapter 1.10: Inductive limits of C*-algebras (252 KB). Chapter 1.11: Exercises (220 KB). Chapter 1.12: Addenda (168 KB). Contents: The Basics of C Oeu -Algebras; Amenable C Oeu -Algebras and K -Theory; AF- Algebras and Ranks of C Oeu -Algebras; Classification of Simple AT -Algebras; C Oeu -Algebra Extensions; Classification of Simple Amenable C Oeu -Algebras. Readership: Researchers and graduate students in operator algebras."
Book Synopsis Tool Kit for Groupoid C∗ -Algebras by : Dana P. Williams
Download or read book Tool Kit for Groupoid C∗ -Algebras written by Dana P. Williams and published by American Mathematical Soc.. This book was released on 2019-09-24 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: The construction of a C∗-algebra from a locally compact groupoid is an important generalization of the group C∗-algebra construction and of the transformation group C∗-algebra construction. Since their introduction in 1980, groupoid C∗-algebras have been intensively studied with diverse applications, including graph algebras, classification theory, variations on the Baum-Connes conjecture, and noncommutative geometry. This book provides a detailed introduction to this vast subject and is suitable for graduate students or any researcher who wants to use groupoid C∗-algebras in their work. The main focus is to equip the reader with modern versions of the basic technical tools used in the subject, which will allow the reader to understand fundamental results and make contributions to various areas in the subject. Thus, in addition to covering the basic properties and construction of groupoid C∗-algebras, the focus is to give a modern treatment of some of the major developments in the subject in recent years, including the Equivalence Theorem and the Disintegration Theorem. Also covered are the complicated subjects of amenability of groupoids and simplicity results. The book is reasonably self-contained and accessible to graduate students with a good background in operator algebras.
Book Synopsis Characterizations of C* Algebras by : Robert Doran
Download or read book Characterizations of C* Algebras written by Robert Doran and published by CRC Press. This book was released on 1986-03-14 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives an account of two celebrated theorems of Gelfand and Naimark for commutative C*-algebras, their tangled history, generalizations and applications, in a form accessible to mathematicians working in various applied fields, and also to students of pure and applied mathematics.