Bayesian and High-Dimensional Global Optimization

Download Bayesian and High-Dimensional Global Optimization PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030647129
Total Pages : 125 pages
Book Rating : 4.0/5 (36 download)

DOWNLOAD NOW!


Book Synopsis Bayesian and High-Dimensional Global Optimization by : Anatoly Zhigljavsky

Download or read book Bayesian and High-Dimensional Global Optimization written by Anatoly Zhigljavsky and published by Springer Nature. This book was released on 2021-03-02 with total page 125 pages. Available in PDF, EPUB and Kindle. Book excerpt: Accessible to a variety of readers, this book is of interest to specialists, graduate students and researchers in mathematics, optimization, computer science, operations research, management science, engineering and other applied areas interested in solving optimization problems. Basic principles, potential and boundaries of applicability of stochastic global optimization techniques are examined in this book. A variety of issues that face specialists in global optimization are explored, such as multidimensional spaces which are frequently ignored by researchers. The importance of precise interpretation of the mathematical results in assessments of optimization methods is demonstrated through examples of convergence in probability of random search. Methodological issues concerning construction and applicability of stochastic global optimization methods are discussed, including the one-step optimal average improvement method based on a statistical model of the objective function. A significant portion of this book is devoted to an analysis of high-dimensional global optimization problems and the so-called ‘curse of dimensionality’. An examination of the three different classes of high-dimensional optimization problems, the geometry of high-dimensional balls and cubes, very slow convergence of global random search algorithms in large-dimensional problems , and poor uniformity of the uniformly distributed sequences of points are included in this book.

Stochastic Global Optimization

Download Stochastic Global Optimization PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387747400
Total Pages : 269 pages
Book Rating : 4.3/5 (877 download)

DOWNLOAD NOW!


Book Synopsis Stochastic Global Optimization by : Anatoly Zhigljavsky

Download or read book Stochastic Global Optimization written by Anatoly Zhigljavsky and published by Springer Science & Business Media. This book was released on 2007-11-20 with total page 269 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book examines the main methodological and theoretical developments in stochastic global optimization. It is designed to inspire readers to explore various stochastic methods of global optimization by clearly explaining the main methodological principles and features of the methods. Among the book’s features is a comprehensive study of probabilistic and statistical models underlying the stochastic optimization algorithms.

Bayesian Approach to Global Optimization

Download Bayesian Approach to Global Optimization PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9400909098
Total Pages : 267 pages
Book Rating : 4.4/5 (9 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Approach to Global Optimization by : Jonas Mockus

Download or read book Bayesian Approach to Global Optimization written by Jonas Mockus and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 267 pages. Available in PDF, EPUB and Kindle. Book excerpt: ·Et moi ... si j'avait su comment en revcnir. One service mathematics has rendered the je o'y semis point alle.' human race. It has put common sense back Jules Verne where it beloogs. on the topmost shelf next to the dusty canister labelled 'discarded non The series is divergent; therefore we may be sense', able to do something with it. Eric T. BclI O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics ... '; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series.

Kernels for Vector-Valued Functions

Download Kernels for Vector-Valued Functions PDF Online Free

Author :
Publisher : Foundations & Trends
ISBN 13 : 9781601985583
Total Pages : 86 pages
Book Rating : 4.9/5 (855 download)

DOWNLOAD NOW!


Book Synopsis Kernels for Vector-Valued Functions by : Mauricio A. Álvarez

Download or read book Kernels for Vector-Valued Functions written by Mauricio A. Álvarez and published by Foundations & Trends. This book was released on 2012 with total page 86 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph reviews different methods to design or learn valid kernel functions for multiple outputs, paying particular attention to the connection between probabilistic and regularization methods.

Automated Machine Learning

Download Automated Machine Learning PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3030053180
Total Pages : 223 pages
Book Rating : 4.0/5 (3 download)

DOWNLOAD NOW!


Book Synopsis Automated Machine Learning by : Frank Hutter

Download or read book Automated Machine Learning written by Frank Hutter and published by Springer. This book was released on 2019-05-17 with total page 223 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book presents the first comprehensive overview of general methods in Automated Machine Learning (AutoML), collects descriptions of existing systems based on these methods, and discusses the first series of international challenges of AutoML systems. The recent success of commercial ML applications and the rapid growth of the field has created a high demand for off-the-shelf ML methods that can be used easily and without expert knowledge. However, many of the recent machine learning successes crucially rely on human experts, who manually select appropriate ML architectures (deep learning architectures or more traditional ML workflows) and their hyperparameters. To overcome this problem, the field of AutoML targets a progressive automation of machine learning, based on principles from optimization and machine learning itself. This book serves as a point of entry into this quickly-developing field for researchers and advanced students alike, as well as providing a reference for practitioners aiming to use AutoML in their work.

Bayesian Optimization and Data Science

Download Bayesian Optimization and Data Science PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9783030244934
Total Pages : 126 pages
Book Rating : 4.2/5 (449 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Optimization and Data Science by : Francesco Archetti

Download or read book Bayesian Optimization and Data Science written by Francesco Archetti and published by Springer. This book was released on 2019-10-07 with total page 126 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume brings together the main results in the field of Bayesian Optimization (BO), focusing on the last ten years and showing how, on the basic framework, new methods have been specialized to solve emerging problems from machine learning, artificial intelligence, and system optimization. It also analyzes the software resources available for BO and a few selected application areas. Some areas for which new results are shown include constrained optimization, safe optimization, and applied mathematics, specifically BO's use in solving difficult nonlinear mixed integer problems. The book will help bring readers to a full understanding of the basic Bayesian Optimization framework and gain an appreciation of its potential for emerging application areas. It will be of particular interest to the data science, computer science, optimization, and engineering communities.

Probability for Machine Learning

Download Probability for Machine Learning PDF Online Free

Author :
Publisher : Machine Learning Mastery
ISBN 13 :
Total Pages : 319 pages
Book Rating : 4./5 ( download)

DOWNLOAD NOW!


Book Synopsis Probability for Machine Learning by : Jason Brownlee

Download or read book Probability for Machine Learning written by Jason Brownlee and published by Machine Learning Mastery. This book was released on 2019-09-24 with total page 319 pages. Available in PDF, EPUB and Kindle. Book excerpt: Probability is the bedrock of machine learning. You cannot develop a deep understanding and application of machine learning without it. Cut through the equations, Greek letters, and confusion, and discover the topics in probability that you need to know. Using clear explanations, standard Python libraries, and step-by-step tutorial lessons, you will discover the importance of probability to machine learning, Bayesian probability, entropy, density estimation, maximum likelihood, and much more.

Parallel Problem Solving from Nature – PPSN XVI

Download Parallel Problem Solving from Nature – PPSN XVI PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030581128
Total Pages : 753 pages
Book Rating : 4.0/5 (35 download)

DOWNLOAD NOW!


Book Synopsis Parallel Problem Solving from Nature – PPSN XVI by : Thomas Bäck

Download or read book Parallel Problem Solving from Nature – PPSN XVI written by Thomas Bäck and published by Springer Nature. This book was released on 2020-09-02 with total page 753 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two-volume set LNCS 12269 and LNCS 12270 constitutes the refereed proceedings of the 16th International Conference on Parallel Problem Solving from Nature, PPSN 2020, held in Leiden, The Netherlands, in September 2020. The 99 revised full papers were carefully reviewed and selected from 268 submissions. The topics cover classical subjects such as automated algorithm selection and configuration; Bayesian- and surrogate-assisted optimization; benchmarking and performance measures; combinatorial optimization; connection between nature-inspired optimization and artificial intelligence; genetic and evolutionary algorithms; genetic programming; landscape analysis; multiobjective optimization; real-world applications; reinforcement learning; and theoretical aspects of nature-inspired optimization.

Bayesian Data Analysis, Third Edition

Download Bayesian Data Analysis, Third Edition PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1439840954
Total Pages : 677 pages
Book Rating : 4.4/5 (398 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Data Analysis, Third Edition by : Andrew Gelman

Download or read book Bayesian Data Analysis, Third Edition written by Andrew Gelman and published by CRC Press. This book was released on 2013-11-01 with total page 677 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.

Derivative-Free and Blackbox Optimization

Download Derivative-Free and Blackbox Optimization PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319689134
Total Pages : 307 pages
Book Rating : 4.3/5 (196 download)

DOWNLOAD NOW!


Book Synopsis Derivative-Free and Blackbox Optimization by : Charles Audet

Download or read book Derivative-Free and Blackbox Optimization written by Charles Audet and published by Springer. This book was released on 2017-12-02 with total page 307 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is designed as a textbook, suitable for self-learning or for teaching an upper-year university course on derivative-free and blackbox optimization. The book is split into 5 parts and is designed to be modular; any individual part depends only on the material in Part I. Part I of the book discusses what is meant by Derivative-Free and Blackbox Optimization, provides background material, and early basics while Part II focuses on heuristic methods (Genetic Algorithms and Nelder-Mead). Part III presents direct search methods (Generalized Pattern Search and Mesh Adaptive Direct Search) and Part IV focuses on model-based methods (Simplex Gradient and Trust Region). Part V discusses dealing with constraints, using surrogates, and bi-objective optimization. End of chapter exercises are included throughout as well as 15 end of chapter projects and over 40 figures. Benchmarking techniques are also presented in the appendix.

Hierarchical Bayesian Optimization Algorithm

Download Hierarchical Bayesian Optimization Algorithm PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9783540237747
Total Pages : 194 pages
Book Rating : 4.2/5 (377 download)

DOWNLOAD NOW!


Book Synopsis Hierarchical Bayesian Optimization Algorithm by : Martin Pelikan

Download or read book Hierarchical Bayesian Optimization Algorithm written by Martin Pelikan and published by Springer Science & Business Media. This book was released on 2005-02 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a framework for the design of competent optimization techniques by combining advanced evolutionary algorithms with state-of-the-art machine learning techniques. The book focuses on two algorithms that replace traditional variation operators of evolutionary algorithms by learning and sampling Bayesian networks: the Bayesian optimization algorithm (BOA) and the hierarchical BOA (hBOA). BOA and hBOA are theoretically and empirically shown to provide robust and scalable solution for broad classes of nearly decomposable and hierarchical problems. A theoretical model is developed that estimates the scalability and adequate parameter settings for BOA and hBOA. The performance of BOA and hBOA is analyzed on a number of artificial problems of bounded difficulty designed to test BOA and hBOA on the boundary of their design envelope. The algorithms are also extensively tested on two interesting classes of real-world problems: MAXSAT and Ising spin glasses with periodic boundary conditions in two and three dimensions. Experimental results validate the theoretical model and confirm that BOA and hBOA provide robust and scalable solution for nearly decomposable and hierarchical problems with only little problem-specific information.

Stochastic and Global Optimization

Download Stochastic and Global Optimization PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1402004842
Total Pages : 238 pages
Book Rating : 4.4/5 (2 download)

DOWNLOAD NOW!


Book Synopsis Stochastic and Global Optimization by : G. Dzemyda

Download or read book Stochastic and Global Optimization written by G. Dzemyda and published by Springer Science & Business Media. This book was released on 2002-03-31 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is dedicated to the 70th birthday of Professor J. Mockus, whose scientific interests include theory and applications of global and discrete optimization, and stochastic programming. The papers for the book were selected because they relate to these topics and also satisfy the criterion of theoretical soundness combined with practical applicability. In addition, the methods for statistical analysis of extremal problems are covered. Although statistical approach to global and discrete optimization is emphasized, applications to optimal design and to mathematical finance are also presented. The results of some subjects (e.g., statistical models based on one-dimensional global optimization) are summarized and the prospects for new developments are justified. Audience: Practitioners, graduate students in mathematics, statistics, computer science and engineering.

Recent Advances in Global Optimization

Download Recent Advances in Global Optimization PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 1400862523
Total Pages : 644 pages
Book Rating : 4.4/5 (8 download)

DOWNLOAD NOW!


Book Synopsis Recent Advances in Global Optimization by : Christodoulos A. Floudas

Download or read book Recent Advances in Global Optimization written by Christodoulos A. Floudas and published by Princeton University Press. This book was released on 2014-07-14 with total page 644 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book will present the papers delivered at the first U.S. conference devoted exclusively to global optimization and will thus provide valuable insights into the significant research on the topic that has been emerging during recent years. Held at Princeton University in May 1991, the conference brought together an interdisciplinary group of the most active developers of algorithms for global optimization in order to focus the attention of the mathematical programming community on the unsolved problems and diverse applications of this field. The main subjects addressed at the conference were advances in deterministic and stochastic methods for global optimization, parallel algorithms for global optimization problems, and applications of global optimization. Although global optimization is primarily a mathematical problem, it is relevant to several other disciplines, including computer science, applied mathematics, physical chemistry, molecular biology, statistics, physics, engineering, operations research, communication theory, and economics. Global optimization problems originate from a wide variety of mathematical models of real-world systems. Some of its applications are allocation and location problems and VLSI and data-base design problems. Originally published in 1991. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Introduction to High-Dimensional Statistics

Download Introduction to High-Dimensional Statistics PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000408353
Total Pages : 410 pages
Book Rating : 4.0/5 (4 download)

DOWNLOAD NOW!


Book Synopsis Introduction to High-Dimensional Statistics by : Christophe Giraud

Download or read book Introduction to High-Dimensional Statistics written by Christophe Giraud and published by CRC Press. This book was released on 2021-08-25 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for the first edition: "[This book] succeeds singularly at providing a structured introduction to this active field of research. ... it is arguably the most accessible overview yet published of the mathematical ideas and principles that one needs to master to enter the field of high-dimensional statistics. ... recommended to anyone interested in the main results of current research in high-dimensional statistics as well as anyone interested in acquiring the core mathematical skills to enter this area of research." —Journal of the American Statistical Association Introduction to High-Dimensional Statistics, Second Edition preserves the philosophy of the first edition: to be a concise guide for students and researchers discovering the area and interested in the mathematics involved. The main concepts and ideas are presented in simple settings, avoiding thereby unessential technicalities. High-dimensional statistics is a fast-evolving field, and much progress has been made on a large variety of topics, providing new insights and methods. Offering a succinct presentation of the mathematical foundations of high-dimensional statistics, this new edition: Offers revised chapters from the previous edition, with the inclusion of many additional materials on some important topics, including compress sensing, estimation with convex constraints, the slope estimator, simultaneously low-rank and row-sparse linear regression, or aggregation of a continuous set of estimators. Introduces three new chapters on iterative algorithms, clustering, and minimax lower bounds. Provides enhanced appendices, minimax lower-bounds mainly with the addition of the Davis-Kahan perturbation bound and of two simple versions of the Hanson-Wright concentration inequality. Covers cutting-edge statistical methods including model selection, sparsity and the Lasso, iterative hard thresholding, aggregation, support vector machines, and learning theory. Provides detailed exercises at the end of every chapter with collaborative solutions on a wiki site. Illustrates concepts with simple but clear practical examples.

Preference Learning

Download Preference Learning PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642141250
Total Pages : 457 pages
Book Rating : 4.6/5 (421 download)

DOWNLOAD NOW!


Book Synopsis Preference Learning by : Johannes Fürnkranz

Download or read book Preference Learning written by Johannes Fürnkranz and published by Springer Science & Business Media. This book was released on 2010-11-19 with total page 457 pages. Available in PDF, EPUB and Kindle. Book excerpt: The topic of preferences is a new branch of machine learning and data mining, and it has attracted considerable attention in artificial intelligence research in previous years. It involves learning from observations that reveal information about the preferences of an individual or a class of individuals. Representing and processing knowledge in terms of preferences is appealing as it allows one to specify desires in a declarative way, to combine qualitative and quantitative modes of reasoning, and to deal with inconsistencies and exceptions in a flexible manner. And, generalizing beyond training data, models thus learned may be used for preference prediction. This is the first book dedicated to this topic, and the treatment is comprehensive. The editors first offer a thorough introduction, including a systematic categorization according to learning task and learning technique, along with a unified notation. The first half of the book is organized into parts on label ranking, instance ranking, and object ranking; while the second half is organized into parts on applications of preference learning in multiattribute domains, information retrieval, and recommender systems. The book will be of interest to researchers and practitioners in artificial intelligence, in particular machine learning and data mining, and in fields such as multicriteria decision-making and operations research.

Global Optimization Methods in Geophysical Inversion

Download Global Optimization Methods in Geophysical Inversion PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107011906
Total Pages : 303 pages
Book Rating : 4.1/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Global Optimization Methods in Geophysical Inversion by : Mrinal K. Sen

Download or read book Global Optimization Methods in Geophysical Inversion written by Mrinal K. Sen and published by Cambridge University Press. This book was released on 2013-02-21 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: An up-to-date overview of global optimization methods used to formulate and interpret geophysical observations, for researchers, graduate students and professionals.

High-Dimensional Optimization

Download High-Dimensional Optimization PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031589092
Total Pages : 153 pages
Book Rating : 4.0/5 (315 download)

DOWNLOAD NOW!


Book Synopsis High-Dimensional Optimization by : Jack Noonan

Download or read book High-Dimensional Optimization written by Jack Noonan and published by Springer Nature. This book was released on with total page 153 pages. Available in PDF, EPUB and Kindle. Book excerpt: