Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Automated Customization Of Ml Inference On Fpgas
Download Automated Customization Of Ml Inference On Fpgas full books in PDF, epub, and Kindle. Read online Automated Customization Of Ml Inference On Fpgas ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Hardware Accelerator Systems for Artificial Intelligence and Machine Learning by :
Download or read book Hardware Accelerator Systems for Artificial Intelligence and Machine Learning written by and published by Academic Press. This book was released on 2021-03-28 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hardware Accelerator Systems for Artificial Intelligence and Machine Learning, Volume 122 delves into arti?cial Intelligence and the growth it has seen with the advent of Deep Neural Networks (DNNs) and Machine Learning. Updates in this release include chapters on Hardware accelerator systems for artificial intelligence and machine learning, Introduction to Hardware Accelerator Systems for Artificial Intelligence and Machine Learning, Deep Learning with GPUs, Edge Computing Optimization of Deep Learning Models for Specialized Tensor Processing Architectures, Architecture of NPU for DNN, Hardware Architecture for Convolutional Neural Network for Image Processing, FPGA based Neural Network Accelerators, and much more. - Updates on new information on the architecture of GPU, NPU and DNN - Discusses In-memory computing, Machine intelligence and Quantum computing - Includes sections on Hardware Accelerator Systems to improve processing efficiency and performance
Book Synopsis VLSI and Hardware Implementations using Modern Machine Learning Methods by : Sandeep Saini
Download or read book VLSI and Hardware Implementations using Modern Machine Learning Methods written by Sandeep Saini and published by CRC Press. This book was released on 2021-12-30 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine learning is a potential solution to resolve bottleneck issues in VLSI via optimizing tasks in the design process. This book aims to provide the latest machine-learning–based methods, algorithms, architectures, and frameworks designed for VLSI design. The focus is on digital, analog, and mixed-signal design techniques, device modeling, physical design, hardware implementation, testability, reconfigurable design, synthesis and verification, and related areas. Chapters include case studies as well as novel research ideas in the given field. Overall, the book provides practical implementations of VLSI design, IC design, and hardware realization using machine learning techniques. Features: Provides the details of state-of-the-art machine learning methods used in VLSI design Discusses hardware implementation and device modeling pertaining to machine learning algorithms Explores machine learning for various VLSI architectures and reconfigurable computing Illustrates the latest techniques for device size and feature optimization Highlights the latest case studies and reviews of the methods used for hardware implementation This book is aimed at researchers, professionals, and graduate students in VLSI, machine learning, electrical and electronic engineering, computer engineering, and hardware systems.
Book Synopsis Machine Learning in VLSI Computer-Aided Design by : Ibrahim (Abe) M. Elfadel
Download or read book Machine Learning in VLSI Computer-Aided Design written by Ibrahim (Abe) M. Elfadel and published by Springer. This book was released on 2019-03-15 with total page 697 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides readers with an up-to-date account of the use of machine learning frameworks, methodologies, algorithms and techniques in the context of computer-aided design (CAD) for very-large-scale integrated circuits (VLSI). Coverage includes the various machine learning methods used in lithography, physical design, yield prediction, post-silicon performance analysis, reliability and failure analysis, power and thermal analysis, analog design, logic synthesis, verification, and neuromorphic design. Provides up-to-date information on machine learning in VLSI CAD for device modeling, layout verifications, yield prediction, post-silicon validation, and reliability; Discusses the use of machine learning techniques in the context of analog and digital synthesis; Demonstrates how to formulate VLSI CAD objectives as machine learning problems and provides a comprehensive treatment of their efficient solutions; Discusses the tradeoff between the cost of collecting data and prediction accuracy and provides a methodology for using prior data to reduce cost of data collection in the design, testing and validation of both analog and digital VLSI designs. From the Foreword As the semiconductor industry embraces the rising swell of cognitive systems and edge intelligence, this book could serve as a harbinger and example of the osmosis that will exist between our cognitive structures and methods, on the one hand, and the hardware architectures and technologies that will support them, on the other....As we transition from the computing era to the cognitive one, it behooves us to remember the success story of VLSI CAD and to earnestly seek the help of the invisible hand so that our future cognitive systems are used to design more powerful cognitive systems. This book is very much aligned with this on-going transition from computing to cognition, and it is with deep pleasure that I recommend it to all those who are actively engaged in this exciting transformation. Dr. Ruchir Puri, IBM Fellow, IBM Watson CTO & Chief Architect, IBM T. J. Watson Research Center
Book Synopsis Design for Embedded Image Processing on FPGAs by : Donald G. Bailey
Download or read book Design for Embedded Image Processing on FPGAs written by Donald G. Bailey and published by John Wiley & Sons. This book was released on 2023-08-14 with total page 501 pages. Available in PDF, EPUB and Kindle. Book excerpt: Design for Embedded Image Processing on FPGAs Bridge the gap between software and hardware with this foundational design reference Field-programmable gate arrays (FPGAs) are integrated circuits designed so that configuration can take place. Circuits of this kind play an integral role in processing images, with FPGAs increasingly embedded in digital cameras and other devices that produce visual data outputs for subsequent realization and compression. These uses of FPGAs require specific design processes designed to mediate smoothly between hardware and processing algorithm. Design for Embedded Image Processing on FPGAs provides a comprehensive overview of these processes and their applications in embedded image processing. Beginning with an overview of image processing and its core principles, this book discusses specific design and computation techniques, with a smooth progression from the foundations of the field to its advanced principles. Readers of the second edition of Design for Embedded Image Processing on FPGAs will also find: Detailed discussion of image processing techniques including point operations, histogram operations, linear transformations, and more New chapters covering Deep Learning algorithms and Image and Video Coding Example applications throughout to ground principles and demonstrate techniques Design for Embedded Image Processing on FPGAs is ideal for engineers and academics working in the field of Image Processing, as well as graduate students studying Embedded Systems Engineering, Image Processing, Digital Design, and related fields.
Book Synopsis Information Management and Big Data by : Juan Antonio Lossio-Ventura
Download or read book Information Management and Big Data written by Juan Antonio Lossio-Ventura and published by Springer Nature. This book was released on with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Hardware Accelerators in Data Centers by : Christoforos Kachris
Download or read book Hardware Accelerators in Data Centers written by Christoforos Kachris and published by Springer. This book was released on 2018-08-21 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides readers with an overview of the architectures, programming frameworks, and hardware accelerators for typical cloud computing applications in data centers. The authors present the most recent and promising solutions, using hardware accelerators to provide high throughput, reduced latency and higher energy efficiency compared to current servers based on commodity processors. Readers will benefit from state-of-the-art information regarding application requirements in contemporary data centers, computational complexity of typical tasks in cloud computing, and a programming framework for the efficient utilization of the hardware accelerators.
Book Synopsis Innovations in Smart Cities Applications Volume 5 by : Mohamed Ben Ahmed
Download or read book Innovations in Smart Cities Applications Volume 5 written by Mohamed Ben Ahmed and published by Springer Nature. This book was released on 2022-03-03 with total page 1117 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book sets the innovative research contributions, works, and solutions for almost all the intelligent and smart applications in the smart cities. The smart city concept is a relevant topic for industrials, governments, and citizens. Due to this, the smart city, considered as a multi-domain context, attracts tremendously academics researchers and practitioners who provide efforts in theoretical proofs, approaches, architectures, and in applied researches. The importance of smart cities comes essentially from the significant growth of populations in the near future which conducts to a real need of smart applications that can support this evolution in the future cities. The main scope of this book covers new and original ideas for the next generations of cities using the new technologies. The book involves the application of the data science and AI, IoT technologies and architectures, smart earth and water management, smart education and E-learning systems, smart modeling systems, smart mobility, and renewable energy. It also reports recent research works on big data technologies, image processing and recognition systems, and smart security and privacy.
Book Synopsis High Performance Computing in Biomimetics by : Kamarul Arifin Ahmad
Download or read book High Performance Computing in Biomimetics written by Kamarul Arifin Ahmad and published by Springer Nature. This book was released on with total page 309 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing by : Sudeep Pasricha
Download or read book Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing written by Sudeep Pasricha and published by Springer Nature. This book was released on 2023-10-09 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents recent advances towards the goal of enabling efficient implementation of machine learning models on resource-constrained systems, covering different application domains. The focus is on presenting interesting and new use cases of applying machine learning to innovative application domains, exploring the efficient hardware design of efficient machine learning accelerators, memory optimization techniques, illustrating model compression and neural architecture search techniques for energy-efficient and fast execution on resource-constrained hardware platforms, and understanding hardware-software codesign techniques for achieving even greater energy, reliability, and performance benefits. Discusses efficient implementation of machine learning in embedded, CPS, IoT, and edge computing; Offers comprehensive coverage of hardware design, software design, and hardware/software co-design and co-optimization; Describes real applications to demonstrate how embedded, CPS, IoT, and edge applications benefit from machine learning.
Book Synopsis Machine Learning and Principles and Practice of Knowledge Discovery in Databases by : Michael Kamp
Download or read book Machine Learning and Principles and Practice of Knowledge Discovery in Databases written by Michael Kamp and published by Springer Nature. This book was released on 2022-02-17 with total page 895 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two-volume set constitutes the refereed proceedings of the workshops which complemented the 21th Joint European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD, held in September 2021. Due to the COVID-19 pandemic the conference and workshops were held online. The 104 papers were thoroughly reviewed and selected from 180 papers submited for the workshops. This two-volume set includes the proceedings of the following workshops:Workshop on Advances in Interpretable Machine Learning and Artificial Intelligence (AIMLAI 2021)Workshop on Parallel, Distributed and Federated Learning (PDFL 2021)Workshop on Graph Embedding and Mining (GEM 2021)Workshop on Machine Learning for Irregular Time-series (ML4ITS 2021)Workshop on IoT, Edge, and Mobile for Embedded Machine Learning (ITEM 2021)Workshop on eXplainable Knowledge Discovery in Data Mining (XKDD 2021)Workshop on Bias and Fairness in AI (BIAS 2021)Workshop on Workshop on Active Inference (IWAI 2021)Workshop on Machine Learning for Cybersecurity (MLCS 2021)Workshop on Machine Learning in Software Engineering (MLiSE 2021)Workshop on MIning Data for financial applications (MIDAS 2021)Sixth Workshop on Data Science for Social Good (SoGood 2021)Workshop on Machine Learning for Pharma and Healthcare Applications (PharML 2021)Second Workshop on Evaluation and Experimental Design in Data Mining and Machine Learning (EDML 2020)Workshop on Machine Learning for Buildings Energy Management (MLBEM 2021)
Book Synopsis Domain-Specific Computer Architectures for Emerging Applications by : Chao Wang
Download or read book Domain-Specific Computer Architectures for Emerging Applications written by Chao Wang and published by CRC Press. This book was released on 2024-06-04 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the end of Moore’s Law, domain-specific architecture (DSA) has become a crucial mode of implementing future computing architectures. This book discusses the system-level design methodology of DSAs and their applications, providing a unified design process that guarantees functionality, performance, energy efficiency, and real-time responsiveness for the target application. DSAs often start from domain-specific algorithms or applications, analyzing the characteristics of algorithmic applications, such as computation, memory access, and communication, and proposing the heterogeneous accelerator architecture suitable for that particular application. This book places particular focus on accelerator hardware platforms and distributed systems for various novel applications, such as machine learning, data mining, neural networks, and graph algorithms, and also covers RISC-V open-source instruction sets. It briefly describes the system design methodology based on DSAs and presents the latest research results in academia around domain-specific acceleration architectures. Providing cutting-edge discussion of big data and artificial intelligence scenarios in contemporary industry and typical DSA applications, this book appeals to industry professionals as well as academicians researching the future of computing in these areas.
Download or read book TinyML written by Pete Warden and published by O'Reilly Media. This book was released on 2019-12-16 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep learning networks are getting smaller. Much smaller. The Google Assistant team can detect words with a model just 14 kilobytes in size—small enough to run on a microcontroller. With this practical book you’ll enter the field of TinyML, where deep learning and embedded systems combine to make astounding things possible with tiny devices. Pete Warden and Daniel Situnayake explain how you can train models small enough to fit into any environment. Ideal for software and hardware developers who want to build embedded systems using machine learning, this guide walks you through creating a series of TinyML projects, step-by-step. No machine learning or microcontroller experience is necessary. Build a speech recognizer, a camera that detects people, and a magic wand that responds to gestures Work with Arduino and ultra-low-power microcontrollers Learn the essentials of ML and how to train your own models Train models to understand audio, image, and accelerometer data Explore TensorFlow Lite for Microcontrollers, Google’s toolkit for TinyML Debug applications and provide safeguards for privacy and security Optimize latency, energy usage, and model and binary size
Book Synopsis Applied Machine Learning and High-Performance Computing on AWS by : Mani Khanuja
Download or read book Applied Machine Learning and High-Performance Computing on AWS written by Mani Khanuja and published by Packt Publishing Ltd. This book was released on 2022-12-30 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build, train, and deploy large machine learning models at scale in various domains such as computational fluid dynamics, genomics, autonomous vehicles, and numerical optimization using Amazon SageMaker Key FeaturesUnderstand the need for high-performance computing (HPC)Build, train, and deploy large ML models with billions of parameters using Amazon SageMakerLearn best practices and architectures for implementing ML at scale using HPCBook Description Machine learning (ML) and high-performance computing (HPC) on AWS run compute-intensive workloads across industries and emerging applications. Its use cases can be linked to various verticals, such as computational fluid dynamics (CFD), genomics, and autonomous vehicles. This book provides end-to-end guidance, starting with HPC concepts for storage and networking. It then progresses to working examples on how to process large datasets using SageMaker Studio and EMR. Next, you'll learn how to build, train, and deploy large models using distributed training. Later chapters also guide you through deploying models to edge devices using SageMaker and IoT Greengrass, and performance optimization of ML models, for low latency use cases. By the end of this book, you'll be able to build, train, and deploy your own large-scale ML application, using HPC on AWS, following industry best practices and addressing the key pain points encountered in the application life cycle. What you will learnExplore data management, storage, and fast networking for HPC applicationsFocus on the analysis and visualization of a large volume of data using SparkTrain visual transformer models using SageMaker distributed trainingDeploy and manage ML models at scale on the cloud and at the edgeGet to grips with performance optimization of ML models for low latency workloadsApply HPC to industry domains such as CFD, genomics, AV, and optimizationWho this book is for The book begins with HPC concepts, however, it expects you to have prior machine learning knowledge. This book is for ML engineers and data scientists interested in learning advanced topics on using large datasets for training large models using distributed training concepts on AWS, deploying models at scale, and performance optimization for low latency use cases. Practitioners in fields such as numerical optimization, computation fluid dynamics, autonomous vehicles, and genomics, who require HPC for applying ML models to applications at scale will also find the book useful.
Book Synopsis 2016 26th International Conference on Field Programmable Logic and Applications (FPL) by : IEEE Staff
Download or read book 2016 26th International Conference on Field Programmable Logic and Applications (FPL) written by IEEE Staff and published by . This book was released on 2016-08-29 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The International Conference on Field Programmable Logic and Applications (FPL) is the first and largest conference covering the rapidly growing area of field programmable logic During the past 26 years, many of the advances achieved in reconfigurable system architectures, applications, embedded processors, design automation methods (EDA) and tools have been first published in the proceedings of the FPL conference series FPL 2016 will offer the following five conference tracks Architectures and Technology, Applications and Benchmarks, Design Methods and Tools, Self aware and Adaptive Systems, Surveys, Trends and Education
Book Synopsis Mastering Azure Machine Learning by : Christoph Körner
Download or read book Mastering Azure Machine Learning written by Christoph Körner and published by Packt Publishing Ltd. This book was released on 2020-04-30 with total page 437 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master expert techniques for building automated and highly scalable end-to-end machine learning models and pipelines in Azure using TensorFlow, Spark, and Kubernetes Key FeaturesMake sense of data on the cloud by implementing advanced analyticsTrain and optimize advanced deep learning models efficiently on Spark using Azure DatabricksDeploy machine learning models for batch and real-time scoring with Azure Kubernetes Service (AKS)Book Description The increase being seen in data volume today requires distributed systems, powerful algorithms, and scalable cloud infrastructure to compute insights and train and deploy machine learning (ML) models. This book will help you improve your knowledge of building ML models using Azure and end-to-end ML pipelines on the cloud. The book starts with an overview of an end-to-end ML project and a guide on how to choose the right Azure service for different ML tasks. It then focuses on Azure Machine Learning and takes you through the process of data experimentation, data preparation, and feature engineering using Azure Machine Learning and Python. You'll learn advanced feature extraction techniques using natural language processing (NLP), classical ML techniques, and the secrets of both a great recommendation engine and a performant computer vision model using deep learning methods. You'll also explore how to train, optimize, and tune models using Azure Automated Machine Learning and HyperDrive, and perform distributed training on Azure. Then, you'll learn different deployment and monitoring techniques using Azure Kubernetes Services with Azure Machine Learning, along with the basics of MLOps—DevOps for ML to automate your ML process as CI/CD pipeline. By the end of this book, you'll have mastered Azure Machine Learning and be able to confidently design, build and operate scalable ML pipelines in Azure. What you will learnSetup your Azure Machine Learning workspace for data experimentation and visualizationPerform ETL, data preparation, and feature extraction using Azure best practicesImplement advanced feature extraction using NLP and word embeddingsTrain gradient boosted tree-ensembles, recommendation engines and deep neural networks on Azure Machine LearningUse hyperparameter tuning and Azure Automated Machine Learning to optimize your ML modelsEmploy distributed ML on GPU clusters using Horovod in Azure Machine LearningDeploy, operate and manage your ML models at scaleAutomated your end-to-end ML process as CI/CD pipelines for MLOpsWho this book is for This machine learning book is for data professionals, data analysts, data engineers, data scientists, or machine learning developers who want to master scalable cloud-based machine learning architectures in Azure. This book will help you use advanced Azure services to build intelligent machine learning applications. A basic understanding of Python and working knowledge of machine learning are mandatory.
Book Synopsis Applications of Computational Intelligence in Data-Driven Trading by : Cris Doloc
Download or read book Applications of Computational Intelligence in Data-Driven Trading written by Cris Doloc and published by John Wiley & Sons. This book was released on 2019-11-05 with total page 319 pages. Available in PDF, EPUB and Kindle. Book excerpt: “Life on earth is filled with many mysteries, but perhaps the most challenging of these is the nature of Intelligence.” – Prof. Terrence J. Sejnowski, Computational Neurobiologist The main objective of this book is to create awareness about both the promises and the formidable challenges that the era of Data-Driven Decision-Making and Machine Learning are confronted with, and especially about how these new developments may influence the future of the financial industry. The subject of Financial Machine Learning has attracted a lot of interest recently, specifically because it represents one of the most challenging problem spaces for the applicability of Machine Learning. The author has used a novel approach to introduce the reader to this topic: The first half of the book is a readable and coherent introduction to two modern topics that are not generally considered together: the data-driven paradigm and Computational Intelligence. The second half of the book illustrates a set of Case Studies that are contemporarily relevant to quantitative trading practitioners who are dealing with problems such as trade execution optimization, price dynamics forecast, portfolio management, market making, derivatives valuation, risk, and compliance. The main purpose of this book is pedagogical in nature, and it is specifically aimed at defining an adequate level of engineering and scientific clarity when it comes to the usage of the term “Artificial Intelligence,” especially as it relates to the financial industry. The message conveyed by this book is one of confidence in the possibilities offered by this new era of Data-Intensive Computation. This message is not grounded on the current hype surrounding the latest technologies, but on a deep analysis of their effectiveness and also on the author’s two decades of professional experience as a technologist, quant and academic.
Book Synopsis Introduction to Machine Learning with Security by : Pramod Gupta
Download or read book Introduction to Machine Learning with Security written by Pramod Gupta and published by Springer Nature. This book was released on with total page 509 pages. Available in PDF, EPUB and Kindle. Book excerpt: